
WiredTiger Backend for OpenLDAP
Open Source Solution Technology Corporation
HAMANO Tsukasa <hamano@osstech.co.jp>

LDAPCon 2015 Edinburgh November 2015

Abstract

This paper introduces WiredTiger backend for
OpenLDAP. WiredTiger is an embedded database
having characteristics of multi-core scalability and
lock-free algorithms. We implemented a new
OpenLDAP backend called back-wt that is using
WiredTiger database and then measured the per-
formance.

1 Motivation

BerkeleyDB is a legacy embedded database. The
write performance of back-bdb (OpenLDAP back-
end using BerkeleyDB) is painfully slow and not
scalable. If we flush disk asynchronously in order
to improve the write performance, data durability
will be sacrificed. Although OpenLDAP is a multi-
threaded application, the existing backends don’t
scale well with number of CPUs. The WiredTiger
backend will bring about highly concurrent write
performance.

2 Data Structure

First, we had to choose data structure either plain
structure such as back-bdb or hierarchical struc-
ture such as back-hdb. If we choose the plain
structure, sub scope searching is fast but modrdn
and add operations need extra cost. Actually we
can’t use modrdn with sub directories on back-bdb.
The plain structure need many @ prefix entries for

sub scope searching, and also % prefix entries are
needed for one scope searching. If we choose the
hierarchical structure, modrdn is fast but lookup
and sub scope search need extra cost.

Figure 1: Plain structure vs Hierarchical structure

We followed basically plain data structure but
we made some enhancements to the data struc-
ture for performance and database footprint. Be-
fore adding an entry, we reverse the DN per RDN
and then add the Reverse DN as the key into
WiredTiger’s B-Tree table. At this point, entries
are sorted by Reverse DN, so we can search rapidly
with a sub scope using WiredTiger’s range search.
The range search is an efficient method that only
needs WT_CURSOR::search_near() and increment
cursor operations for this purpose.

1

Figure 2: Making Reverse DN

Figure 3: back-wt data structure

3 Data Durability

WiredTiger has several durability levels of trans-
action. Here is the back-wt settings correspond-
ing to each durability level. In back-wt, we
can set wtconfig patameter in order to set dura-
bility level. This parameters are just passed to
wiredtiger_open().

1. Write transaction log into memory. This is the
fastest, but it only ensure durability at check-
point.

wtconfig log=(enabled=false)

Listing 1: slapd.conf for in-memory transaction
log

2. Write transaction log into file, but log records
aren’t flushd for each commit of the transac-
tion. This is equivalent to dbnosync in back-
bdb.

wtconfig log=(enabled)

wtconfig transaction_sync=(enabled=false)

Listing 2: slapd.conf for writing transaction log
without sync

3. Write transaction log into file, and log records
are flushd for each commit of the transaction.

wtconfig log=(enabled)

wtconfig transaction_sync=(enabled=true)

Listing 3: slapd.conf for writing transaction log
with sync

4 Current Status

• slapadd, slapcat, slapindex have been imple-
mented.

• basic LDAP operations (BIND, ADD,
DELETE, SEARCH, MODIFY, MODRDN)
have been implemented.

• Password Modify Extended Operation (RFC
3062) works.

• deref search has not been implemented yet.
• alias and glue entry have not been imple-

mented yet.
• WiredTiger does not support multiprocess ac-

cess yet. It means that we can’t do slapcat
while running slapd at the moment. However,
WiredTiger is planning to support RPC in the
future. If it is realized, we can do hot-backup
while avoiding multi-process locking.

• We do not implement entry cache similar to
back-bdb. It’s not absolutely necessary since
WiredTiger cache is fast enough.

• back-wt currently uses B-Tree table. We will
test LSM table in the future.

5 Benchmarking

We have measured benchmarks that focus on con-
currency performance by new benchmarking tool

2

that called lb.1 This benchmark tool can generate
many concurrency load by goroutines of Go. See
our wiki page for detail of benchmarks.2

5.1 Enviroments

We have executed benchmarks on following envi-
ronments:

• 12 Core x 2 Hyper Threading = 24 Logical
CPUs.

• 15,000 RPM SAS Disks, not used RAID
cards.

• Database directory was placed on ext4 file
system on Linux box.

• 60G Memory
• OpenLDAP of git master at Sep 2015 and ap-

plied some back-wt patches.
• No checkpoint was performed during the

benchmarking.
• We measured two methods for ADD bench-

marking, the first flushes disk transaction log
each request and the second doesn’t flush disk
transaction log each request.

5.2 Results

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 4 8 16 32 64 128 256 512

R
e
q
u
e
s
ts

 p
e
r

s
e
c
o
n
d

Concurrency Level

 back-wt req/sec

 back-bdb req/sec

 back-mdb req/sec

Figure 4: LDAP ADD Rate (sync txn log)

1https://github.com/hamano/lb
2https://github.com/osstech-jp/openldap/wiki/

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 2 4 8 16 32 64 128 256 512

R
e
q
u
e
s
ts

 p
e
r

s
e
c
o
n
d

Concurrency Level

 back-wt req/sec

 back-bdb req/sec

 back-mdb req/sec

Figure 5: LDAP ADD Rate (nosync txn log)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1 2 4 8 16 32 64 128 256 512

R
e
q
u
e
s
ts

 p
e
r

s
e
c
o
n
d

Concurrency Level

 back-wt req/sec

 back-bdb req/sec

 back-mdb req/sec

Figure 6: LDAP BIND Rate

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 2 4 8 16 32 64 128 256 512

R
e
q
u
e
s
ts

 p
e
r

s
e
c
o
n
d

Concurrency Level

 back-wt req/sec

 back-bdb req/sec

 back-mdb req/sec

Figure 7: LDAP SEARCH Rate

5.3 Analysis

• We have only used 24 logical CPUs. We may
get more scalability on more CPUs.

• The reading performances are much the same.
• The concurrency writing performances of

back-wt are pretty good.

3

https://github.com/hamano/lb
https://github.com/osstech-jp/openldap/wiki/

	1 Motivation
	2 Data Structure
	3 Data Durability
	4 Current Status
	5 Benchmarking
	5.1 Enviroments
	5.2 Results
	5.3 Analysis

