
1

LDAP Basics

Andrew Findlay
Skills 1st Ltd

November 2015

Dr Andrew Findlay
Skills 1st Ltd
2 Cedar Chase
Taplow
Maidenhead
SL6 0EU
01628 782565
andrew.findlay@skills-1st.co.uk

NOTE:
This is a copyright work. It it licensed to course attendees for their
personal use and must not be distributed further without written
permission from Skills 1st Ltd. Preparing a course like this takes
many weeks of hard work, which is an investment that we can only
recover by delivering it to more people. If you think this course is
useful, please encourage other people to book their own places.
Don't give away our source of income. Thanks.

2

Course Overview

● Directory service basics
● LDAP data model
● LDAP service model
● Authentication with LDAP

This version of the course matches exercises version 2.
It assumes that new deployments will use mdb databases but continues to mention

hdb parameters where appropriate.

3

1: Directories and LDAP

4

Directories everywhere

● You look things up in them...
● The Phone Book (White Pages)
● Yellow Pages
● Business Directories
● DNS
● Google? No: unstructured data

5

Directory services need

● Standard network protocol
● Highly structured data
● Very fast search and read
● Ability to distribute data
● Ability to cache data
● Ability to replicate data

Having a standard protocol rather than a standard API or ABI means
that clients and servers can come from different suppliers and still
work together.

Structured data is necessary to support non-human data users.
Some applications generate a lot of directory operations per second,

so we need to replicate and cache for performance.
Distributing data allows easier delegation of data management, and

thus better data quality.

6

Directory service standards

● ECMA TR32 (1985)
● X.500: ISO/CCITT standard 1988/1993...

● Data model
● Directory Access Protocol
● Directory System Protocol
● X.509 Certificates for strong authentication

● LDAP: Internet RFCs 1993 onwards
● RFC4510 (2006) is current master doc
● 60+ relevant RFCs

The X.500/ISO9594 standards were jointly developed by ISO and the
CCITT (now known as ITU-T). LDAP standards reference the 1993
edition of the X.500 documents, so you should have copies of those for
reference. As the 1993 version has now been superseded, it is
available without charge from ITU:

http://www.itu.int/itu-t/recommendations/index.aspx?ser=X

A handy collection of LDAP-related RFCs is distributed with the
OpenLDAP source code, in the doc/rfc directory.

7

LDAP Overview

● Lightweight Directory Access Protocol
● Based on X.500 / ISO9594
● Read-mostly datastore
● Replication, distributed data
● Standard protocol rather than API
● Tree of data - the DIT
● Attribute-value in nodes

LDAP was originally designed purely as an access protocol for
X.500-based directory systems. It is now mainly used with LDAP-
only servers.

Standards define the protocol. There are several APIs (Application
Programming Interfaces) defined by software developers. Some
of these – particularly the ones that try to use SQL – are truly
dreadful, but they can all make basic queries against any LDAP
server.

8

Data model 1: entries

● An entry represents a person,
organisation, room, printer...

● Attribute-value data:

commonName: Dr A J Findlay

commonName: Andrew Findlay

surname: Findlay

mail: andrew.findlay@skills-1st.co.uk

telephoneNumber: +44 1628 782565

Many attributes are allowed to have multiple values. These are sets, not
sequences so do not depend on the order of the values being
preserved.

9

Data model 2: the DIT

c=de c=gb c=nl c=no

o=Skills 1st Ltd o=UKUUG Ltd

cn=Andrew Findlay cn=Jane Curry

The root node does not have a name, and in the CCITT version of the
standard it is a purely virtual entity

The naming scheme shown here is the one used in the standards and in
most books on directory services, but is not recommended for real-
world systems.

10

Entry names

● Select one attribute-value pair
– This becomes the RDN

● The full DN is the catenation of all entry
names on the path up to the root
– cn=J Smith,o=Big PLC,c=GB

● Potential for clashes
● Multi-valued RDNs are permitted

– cn=J Smith+uid=js763,o=Big PLC,c=GB

RDN is Relative Distinguished Name
DN is Distinguished Name
Very like relative and absolute filenames in Unix, but the root is at the

right-hand-end and is not marked explicitly. In practice you can assume
that any DN with two or more components is absolute (there is no
concept of a 'current position' in LDAP). The protocol almost always
uses the absolute DN form.

Although multi-valued RDNs can be used to resolve name clashes, they
still do not solve the problem of people who change their name. It is
better to an opaque ID as the naming attribute.

11

Simple Search

● Specify:
– A subtree to be searched

o=Skills 1st,c=gb

– A filter to match entries of interest
sn=Findlay
cn=Andrew*

● Get back:
– Zero or more entries

– Status

There are lots more options to the search operation,
which we will cover later. This is enough to do
something useful.

12

Exercise 1

● Login and explore
● Create LDAP Server
● Simple searches

13

2: LDAP Data Definitions

14

Acronyms

● DSA – Directory System Agent
– LDAP Server

● DUA – Directory User Agent
– LDAP client library

● DIT – Directory Information Tree
● DN – Distinguished Name

15

Schema and other difficult words

● Attribute Type
● Syntax
● Matching Rule
● Object Class
● Inheritance
● OID

16

Inheritance

● X.500 and LDAP are object-oriented
● Things defined as 'like this, but with

these extras'
● Inheritance indicated in schema by 'SUP'

(superior)

Inheritance applies to attribute types and object classes. There is a
hierarchy of each.

17

Attribute types

● Names used to describe a type of data
– cn, sn, mail, telephoneNumber ...

● Attribute definition includes:
– name

– OID

– syntax

– permitted matching rules

– single-value flag

18

Attribute definition

● Varies from one server to another
attributetype (0.9.2342.19200300.100.1.5
 NAME ('drink' 'favouriteDrink')
 DESC 'RFC1274: favorite drink'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256}
)
attributetype (2.5.4.3
 NAME ('cn' 'commonName')
 DESC 'RFC2256: name of the entity'
 SUP name
)

The syntax shown here matches that used in the RFCs. Some
LDAP servers require schema to be specified differently.

LDAP schemas often give multiple synonyms for attributes. This is a
hang-over from X.500 where it worked because only OIDs were
used on the wire. LDAP servers and clients do not always match
up the synonyms, which can cause confusion. Always use the
shortest name.

Note the suggested length limit on the syntax of favouriteDrink. This
is a 'minimum maximum' and all it means is that servers and
clients must allow the value to be at least that size.

cn inherits most of its characteristics from 'name'

19

Syntaxes

● Data-types
– directoryString

– DN

– generalizedTime

– IA5String

– telephoneNumber

– postalAddress

● Always referred to by OID
● Text almost always UTF-8

Most text attributes in LDAP allow the full UTF-8 character set. A few have
a more restrictive definition, e.g. e-mail addresses must be in IA5
(ASCII)

Syntaxes must be compiled into the clients and servers so it is normally
not practical to add new ones.

20

Matching Rules

● Operations to be used in searches
– caseExactMatch

– caseIgnoreMatch

– caseIgnoreSubstringsMatch

– caseIgnoreOrderingMatch

– telephoneNumberMatch

– Many more...

● Beware! Not all implemented!

DSAs will only permit searches if the definition of the attribute being
matched includes the relevant matching rule. This can be really
annoying, as some obvious combinations are missing – probably
due to an oversight by the author of the original schema. This
can sometimes be worked around in the client by using a special
search form that includes the OID of the matching rule to be
used (see RFC4515 for details).

Worse still, many DSAs implement a very limited subset of the
matching rules. In a recent design job I had to work around a
big-name server that would not do greater-than/less-than
comparisons on integers.

21

Object classes

● Define the type of the entry
● List permitted and required attributes
● Three types:

– Structural

– Auxiliary

– Abstract

● Inheritance is supported

Once an entry has been created, its structural object class cannot be
changed.

Auxiliary classes can be added and removed at any time.
Abstract classes are very rare: you will never need to declare one.

22

Objectclass definitions

objectclass (2.5.6.6
 NAME 'person'
 DESC 'RFC2256: a person'
 SUP top STRUCTURAL
 MUST (sn $ cn)
 MAY (userPassword $
 telephoneNumber $ seeAlso $
 description)
)

The set of attributes used in a class can seem very arbitrary. The early
(X.500 1988) classes were defined before there was much practical
experience of directory services, and many of the others “grew like
topsy” during the PARADISE project.

However silly they may seem, do not modify the standard definitions –
you can easily add your own classes, and there may be hidden
assumptions in server and client code that would break if you changed
something they were expecting to see.

23

Objectclass rules

● STRUCTURAL class of entry cannot be
changed after creation

● Entry cannot inherit from two different
structural classes
– person, organizationalPerson,

inetOrgPerson is OK

– inetOrgPerson, pilotPerson is not

person, organizationalPerson, and inetOrgPerson are a single
inheritance chain, so an inetOrgPerson object is also a person
object by definition. These are all structural classes.

pilotPerson is also a structural class but it inherits directly from top
so it clashes with the other classes.

This rule and the division into STRUCTURAL, ABSTRACT, and
AUXILIARY classes came in from X.500(1993) so many older
schema definitions were caught by it. Early LDAP servers did not
enforce any schema rules but later ones do, so people still run
into problems when they upgrade their software.

24

OIDs

● Object Identifier – a unique “name”
● X.500 uses these in protocol
● LDAP prefers human-readable names
● 0.9.2342.19200300.100.1.5
● Infinitely extendable
● Various registries and allocation rules

– 1.2.826.0.1.<UK company number>

It is fairly easy to get an allocation under the “enterprises” arc from
IANA.

Easier still in some countries as standards like the UK's BS7453
effectively pre-allocate OIDs to registered companies. (The
example given above is for companies registered in England or
Wales)

For organizations registered as a company under the provisions of
the Companies Act 1985, section 6.1.1 of BS7453 states that
the company "is deemed to be assigned" an object identifier that
starts with 1 for England and Wales, 2 for Scotland, and 3 for
Northern Ireland, and has as its next component "the integer
value of the numeric component of the registered number".

Once you have an OID you can assign what you like beneath it.
For LDAP purposes the main thing is to make sure that the OIDs

you use are unique. Their structure does not have any inherent
meaning.

Harald Alvestrand maintains a useful registry of OIDs:
http://www.alvestrand.no/objectid/

25

Data model summary

● Tree of entries – the DIT
● Attribute-value data in entries
● Schema rules define what can/must be

present

26

Exercise 2

● Install GUI browser
● Browse DIT
● Simple searches
● Browse schema

27

3: LDAP Operations

28

LDAP operations

● Bind
● Search
● Add
● Delete
● Modify
● Compare
● Abandon
● Extended

There is no “read” operation – this function is included in Search
There are a few others, such as “Modify DN” which are not used very

much – see RFC4511 for the full details

Controls can be applied to most operations to change their behaviour. A
particularly useful one allows the operation to be performed as if bound
as some other user. This is governed by server policy, and can be
useful with trusted portal applications.

29

Bind

● Authenticates to the server
● “Simple”: DN and password
● SASL

– userID and credentials
● Kerberos
● DIGEST_MD5

– external (e.g. client certificate)

LDAPv3 allows anonymous operations without Bind.
LDAP 'usernames' are DNs. They often correspond to entries in the DIT,

but they do not have to.
One username that usually does not have a corresponding entry is known

as the rootdn and it has powers similar to the Unix root account.

30

Search

● Base – specifies starting point in DIT
● Scope – how far to look

– base object, single level, subtree

● Filter – what to look for
● Attribute list – what to return
● Options – limits on size, time etc

.

31

Search filter examples

● (sn=Smith)
● (cn=Andrew*)
● (cn=and*w*fi*y)
● (objectClass=*)
● (&(objectclass=acct)(uid=zb42))
● (&(objectclass=person)(|(cn=*fred*)

(sn=*fred*)(drink=*fred*)))

Don't OR too many things together! If you include just one that the
DSA does not index, the performance drops badly and the DSA
may refuse to perform the search.

Search filters are supposed to be enclosed in parentheses. Most
implementations cope if you omit them, but it is better to use the
correct syntax..

32

Search results

● Zero or more entry names
● Possibly some attributes for each entry
● Status code

– Success

– Various failures

– Size limit exceeded

– Admin limit exceeded

● Operational attributes can be requested

Finding zero entries is not an error!
If no attributes are requested, search will return all the “user” attributes

that the requester is allowed to see.
Operational attributes include things like creation date, last modified date,

last modified by, etc... You must ask for these explicitly if you want
them.

Directories do not often return “permission denied” codes – they are more
likely to behave as if the data you asked for simply does not exist.

It is possible to get some entries as well as an error code. If you exceed a
limit then it is up to the server to decide whether to return anything at
all.

33

Modify

● Add/delete/change attribute-value pairs
● Accepts a list of changes
● The only atomic operation
● Modify/replace whole attributes or

specified values
– To specify values there must be a matching

rule for the attribute

Beware of reading entries and then sending back entire modified
attributes – if the attribute has 100,000 values this could take a long
time! (e.g. big groups)

34

Add

● Add one directory entry
● Entry must conform to schema
● Parent entry must exist

(unless adding a suffix entry)
● Bulk adds usually start from LDIF file

35

LDIF

● LDAP Data Interchange Format
● RFC2849
● Transfer complete entries / subtrees
● Specify attribute-level modifications
● Delete entries
● Portable format

– backup

– data transfer between DSAs

dn: uid=ac000000,dc=example,dc=org
objectclass: inetOrgPerson
cn: Jason Medland
sn: Medland
mail: ac000000@example.org
telephoneNumber: +44 1234 567000

dn: uid=bl2345,dc=example,dc=org
changetype: delete

dn: uid=ma736353,dc=example,dc=org
changetype: modify
add: postaladdress
postaladdress: 25 The Street $ The Town $ Linuxshire
-
replace: mail
mail: ma5@example.org
-

36

LDIF Example
dn: dc=people,dc=example,dc=org
objectclass: organizationalUnit
objectclass: dcObject
ou: People
dc: people

dn: uid=qr00042,dc=people,dc=example,dc=org
objectclass: inetOrgPerson
objectclass: person
cn: Fiona Pinnington
sn: Pinnington
uid: qr00042
mail: qr00042@example.org
telephoneNumber: +44 1234 567000
userPassword: secret

Where an LDIF file defines objects at several levels
in the tree it is important to place the higher-level
ones before objects that are logically 'below' them.

37

Command-line tools

● One tool for each LDAP operation:
– ldapsearch

– ldapadd

– ldapmodify

– ldapdelete

– ldappasswd

● All can bind as specified ID

38

Command-line examples

ldapsearch ­x ­b dc=example,dc=org \
 sn=smith

ldapsearch ­x \
 ­D cn=root,dc=example,dc=org \
 ­w secret \
 ­b dc=example,dc=org \
 ­s sub \
 '(&(sn=smith)(mail=*@example.org))'

ldapadd ­x \
 ­D cn=root,dc=example,dc=org \
 ­y file­with­password \
 ­f data.ldif

Most command-line option flags are common to
LDAP tools from all suppliers, but some of the more
recent flags vary as they were introduced after the
various code-bases forked from the original
University of Michigan code.

39

Exercise 3

● Load data from LDIF
● Modify data from GUI

40

4: Authentication
and

Authorisation

41

Authentication using LDAP

● Normal process:
– Bind anonymously or with fixed ID

– Search for user entry (uid=username)

– Bind as that entry with supplied
password

● Alternative:
– Bind directly using SASL

Note that in both cases the supplied password will
usually be sent to the LDAP server. This transaction
should be protected cryptographically.

42

Authorisation using LDAP

● Authorisation normally expressed as
group membership

● LDAP group is an entry
● Members represented by DN values of

member attribute
dn: cn=Web Editors,ou=groups,dc=example,dc=org
objectclass: groupOfNames
cn: Web Editors
member: uid=qr0042,dc=people,dc=example,dc=org
member: uid=xa0003,dc=people,dc=example,dc=org

An application will get the user's DN during the
authorisation process. It can easily check whether
that DN is listed as a member of a particular group
before giving access to controlled facilities. This can
be done using either the search or compare
operations. If search is used, take care not to
request the return of the member attribute as it may
have many thousands of values.

43

POSIX passwd data in LDAP

● RFC2307
ajf:x:1234:1234:Andrew Findlay:/home/ajf:/bin/bash

objectclass: inetOrgPerson
objectclass: posixAccount
cn: Andrew Findlay
sn: Findlay
uid: ajf
uidNumber: 1234
gidNumber: 1234
homeDirectory: /home/ajf
gecos: Andrew Findlay
userPassword: {SSHA}MCbiTYMHrt6GSReXxZ6dHzNviiUEE/xR

The original RFC2307 has some flaws, but is widely
supported.
Newer systems may conform to 'rfc2307bis' which
can be found in the OpenLDAP source distribution
as draft­howard­rfc2307bis­xx.txt
There are still problems with this schema: it mixes
account management and password management
and it is not completely POSIX compliant. Efforts to
improve it are ongoing. There is also a competitor
called DBIS that appeared in 2014.

44

POSIX group data in LDAP

● RFC2307
objectClass: posixGroup
cn: dialout
gidNumber: 16
memberUid: ajf
memberUid: bjc
memberUid: mtr

Important: existing LDAP data conforming to
RFC2307 may not load into a directory server
conforming to RFC2307bis without modification. The
definitions of some attribute types and object
classes have changed in incompatible ways. For
example, posixGroup is now an auxiliary class
rather than a structural one.

Note that memberUid is case-sensitive, where uid
itself is not.

45

Exercise 4

● Simple authentication
● Groups using DNs
● Using RFC2307

– Passwd data

– Groups using UIDs

46

More LDAP Topics

● TLS
● Replication
● Distributed DIT
● DIT Design
● Access Control
● Client-side programming

Examples:
OpenSuSE 11.3 (released 15 July 2010) has OpenLDAP 2.4.21 – at
that time the OpenLDAP project had just released 2.4.23 which was
followed by 2.4.24 in February 2011.
SLES 10.2 (released May 2008) has OpenLDAP 2.3.32 (released Jan
2007) – 2.3.39 had been the “stable” version since December 2007,
and 2.4.9 had just been announced. This version of SLES was
supported until the end of March 2010, yet OpenLDAP 2.4.11 had been
the stable version since August 2008.
GnuTLS is used by some licence-purist distros like Debian, but it has
many problems and should be avoided.

47

LDAP Basics

Andrew Findlay
Skills 1st Ltd

November 2015
andrew.findlay@skills-1st.co.uk

48

