SCRAM in LDAP

Better Password-based Authentication

Kurt Zeilenga
Isode Limited



What is SCRAM?

® Salted Challenge Response

Authentication Mechanism

® SCRAM-SHA-1-PLUS

® An improved SASL mechanism for
password authentication of the user.

® Designed to mitigate threats of the modern
Internet and Enterprise networks.



Why is it “better’?

® | et’s review the history of password-based
authentication in LDAP



Password

authentication at the
dawn of LDAP

® | DAP Simple Bind with DN & Password (in

clear) without any confidentiality protection
and without authentication of the server.

® Password stored in clear user entry

® Octet wise comparison (ASCII assumed)



LDAPvV2 over SSL

® Data confidentiality protection needed to
protect passwords during LDAP Simple
Bind, as well as protect subsequent data
exchange.

® While SSL provided for complete client
verification of server X.509 certificate,
server verification not commonly
performed in early years.



Enter SASL

® RFC 2251 introduced SASL authentication
to LDAP in 1997.

® Password-based SASL mechanisms at this
time included PLAIN and CRAM-MD?5.



PLAIN

® authcid + password

® plus an authzid for identity assumption

® Not much reason to use it (then or now)
in LDAP, and generally not used in LDAP.



CRAM-MD)5

® Primarily introduced to protect password
during exchange.

® Used heavily in email protocols.

® Not generally used in LDAP as LDAP uses
SSL to protect passwords.

® | DAP deployers generally wanted to not
only to protect passwords during exchange,
but protect all LDAP data. Hence, CRAM-

MDJ5 did not offer much value.



DIGEST-MD5

Introduced to address weaknesses of
CRAM-MD?5 and to provide compatibility
with HT TP Digest.

Provides for mutual authentication, but
rarely properly implemented, rarely used.

Provides for data integrity/confidential
protection, but wasn’t well implemented
and is not widely deployed.

Provided for hashed password storage, but
is a password equivalent.



Hashed Password
Storage

® |ntroduced by RFC 2307 (Experimental)

® Compatible with use of Simple and PLAIN
mechanisms and operating system login
mechanism (e.g., crypt(3))

® |ncompatible with DIGEST-MD)5.



Enter RFC 2829/2930

® Detailed use of SASL and TLS in LDAP
including introduction of the Start TLS
operation and the DIGEST-MD5
mandatory-to-implement requirement.

® Strongly encouraged use of TLS to protect
Simple Bind (server authentication,
confidentiality protection).



LDAP Password Modify

® RFC 3062 (Standard Track)

® |ntroduced to eliminate need for client to
know where the user entry is, or where

the password is, or how it’s to be prepared
for storage, etc.

® Originally implemented in OpenLDAP, now
broadly implemented (but not ubiquitous).



AuthPassword
Introduced

® RFC 3112 (Informational)

® |ntended to address abuse of userPassword
to hold hashed user passwords

® No known implementations



Enter RFC 4422/4510

® SASL and LDAPv3 Revised

® Detailed handling of international user
names and passwords

® | DAP Mandatory-to-Implement

authentication mechanism changed to
StartTLS+Simple w/ DN & Password



Current Situation

® Simple Bind with DN & Password over TLS
(startTLS or ldaps://) is ubiquitous.

® TLS certification checks generally implemented
well but often not used or used improperly.

® Use of hashed password storage is common
(often required), commonly newer RFC 2307
schemes such as Salted SHAI or even Salted

SHA2.



So what’s the problem?

® Users often send actual passwords without
authenticating the server.

® User has to trust server with its actual
password. Server can impersonate user
elsewhere.

® Server has to assume client properly
implements server authentication AND it’s
properly used. Bad assumptions (especially
the latter).



How does SCRAM
address these
problems?

® Actual password not sent. Derived value
sent is not reusable.

® Mutual authentication: Server must produce

a response that demonstrates it knowledge
of the user credentials.



SCRAM
Password Storage

® Authentication information held in the
server is not sufficient to impersonate the
user, and is salted.

® <insert example>

® Simple Bind compatible (including same
internationalization)



But we still have a
problem...

® Server has to assume client properly
implements server authentication AND it’s
properly used. Bad assumptions (especially
the latter).



And this is serious
problem...

® Server not assured there is no
man-in-middle.



Solution: SCRAM+
“Channel Bindings”
to TLS

® Proves to the client that the SCRAM server
entity is also in control of the server TLS

end-point.

® Proves to the server that the SCRAM
server entity is also in control of the client

TLS end-point.



SASL

Client Server




SASL

v

Client Server

Relay [N}




SASL

Client Server

Relay

-
-

>
-
—



-
O
>
=
Q
7p

1ini

©
Q
oc




-
O
>
=
Q

7y

! =
3 =
=







-
O
>
=
Q

7p




Client




Details

e SCRAM: RFC 5802
® TLS Channel Bindings: RFC xxxx

® Further reading: http://www.isode.com/
whitepapers/scram.html



Questions



