
SCRAM in LDAP
Better Password-based Authentication

Kurt Zeilenga
Isode Limited

What is SCRAM?

•Salted Challenge Response

Authentication Mechanism

•SCRAM-SHA-1-PLUS

• An improved SASL mechanism for
password authentication of the user.

• Designed to mitigate threats of the modern
Internet and Enterprise networks.

Why is it “better”?

• Let’s review the history of password-based
authentication in LDAP

Password
authentication at the

dawn of LDAP

• LDAP Simple Bind with DN & Password (in
clear) without any confidentiality protection
and without authentication of the server.

• Password stored in clear user entry

• Octet wise comparison (ASCII assumed)

LDAPv2 over SSL

• Data confidentiality protection needed to
protect passwords during LDAP Simple
Bind, as well as protect subsequent data
exchange.

• While SSL provided for complete client
verification of server X.509 certificate,
server verification not commonly
performed in early years.

Enter SASL

• RFC 2251 introduced SASL authentication
to LDAP in 1997.

• Password-based SASL mechanisms at this
time included PLAIN and CRAM-MD5.

PLAIN

• authcid + password

• plus an authzid for identity assumption

• Not much reason to use it (then or now)
in LDAP, and generally not used in LDAP.

CRAM-MD5
• Primarily introduced to protect password

during exchange.

• Used heavily in email protocols.

• Not generally used in LDAP as LDAP uses
SSL to protect passwords.

• LDAP deployers generally wanted to not
only to protect passwords during exchange,
but protect all LDAP data. Hence, CRAM-
MD5 did not offer much value.

DIGEST-MD5
• Introduced to address weaknesses of

CRAM-MD5 and to provide compatibility
with HTTP Digest.

• Provides for mutual authentication, but
rarely properly implemented, rarely used.

• Provides for data integrity/confidential
protection, but wasn’t well implemented
and is not widely deployed.

• Provided for hashed password storage, but
is a password equivalent.

Hashed Password
Storage

• Introduced by RFC 2307 (Experimental)

• Compatible with use of Simple and PLAIN
mechanisms and operating system login
mechanism (e.g., crypt(3))

• Incompatible with DIGEST-MD5.

Enter RFC 2829/2930

• Detailed use of SASL and TLS in LDAP,
including introduction of the Start TLS
operation and the DIGEST-MD5
mandatory-to-implement requirement.

• Strongly encouraged use of TLS to protect
Simple Bind (server authentication,
confidentiality protection).

LDAP Password Modify

• RFC 3062 (Standard Track)

• Introduced to eliminate need for client to
know where the user entry is, or where
the password is, or how it’s to be prepared
for storage, etc.

• Originally implemented in OpenLDAP, now
broadly implemented (but not ubiquitous).

AuthPassword
Introduced

• RFC 3112 (Informational)

• Intended to address abuse of userPassword
to hold hashed user passwords

• No known implementations

Enter RFC 4422/4510

• SASL and LDAPv3 Revised

• Detailed handling of international user
names and passwords

• LDAP Mandatory-to-Implement
authentication mechanism changed to
StartTLS+Simple w/ DN & Password

Current Situation

• Simple Bind with DN & Password over TLS
(startTLS or ldaps://) is ubiquitous.

• TLS certification checks generally implemented
well but often not used or used improperly.

• Use of hashed password storage is common
(often required), commonly newer RFC 2307
schemes such as Salted SHA1 or even Salted
SHA2.

So what’s the problem?
• Users often send actual passwords without

authenticating the server.

• User has to trust server with its actual
password. Server can impersonate user
elsewhere.

• Server has to assume client properly
implements server authentication AND it’s
properly used. Bad assumptions (especially
the latter).

How does SCRAM
address these

problems?

• Actual password not sent. Derived value
sent is not reusable.

• Mutual authentication: Server must produce
a response that demonstrates it knowledge
of the user credentials.

SCRAM
Password Storage

• Authentication information held in the
server is not sufficient to impersonate the
user, and is salted.

• <insert example>

• Simple Bind compatible (including same
internationalization)

But we still have a
problem...

• Server has to assume client properly
implements server authentication AND it’s
properly used. Bad assumptions (especially
the latter).

And this is serious
problem...

• Server not assured there is no
man-in-middle.

Solution: SCRAM+
“Channel Bindings”

to TLS
• Proves to the client that the SCRAM server

entity is also in control of the server TLS
end-point.

• Proves to the server that the SCRAM
server entity is also in control of the client
TLS end-point.

TLS

SASL

LDAP

Client Server

TCP

TCP

TLS

SASL

LDAP

Client Server

TCP
 Relay

TCP

TLS

SASL

LDAP

Client Server

TCP

Relay

TLS

TCP

TLS

SASL

LDAP

Client Server

TCP

Relay

TLS

SASL

LDAP

TCP

TLS

SASL

LDAP

Client Server

TCP

MITM

TLS

TLS

SASL

LDAP

Client Server

TCP

TCP

TLS

SASL

LDAP

Client Server

TCP

MITM

TLS

X

TCP

TLS

SASL

LDAP

Client Server

TCP
 Relay

Details

• SCRAM: RFC 5802

• TLS Channel Bindings: RFC xxxx

• Further reading: http://www.isode.com/
whitepapers/scram.html

Questions

