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What is SCRAM?

•Salted Challenge Response 

Authentication Mechanism

•SCRAM-SHA-1-PLUS

• An improved SASL mechanism for 
password authentication of the user.

• Designed to mitigate threats of the modern 
Internet and Enterprise networks.



Why is it “better”?

• Let’s review the history of password-based 
authentication in LDAP



Password 
authentication at the 

dawn of LDAP

• LDAP Simple Bind with DN & Password (in 
clear) without any confidentiality protection 
and without authentication of the server.

• Password stored in clear user entry

• Octet wise comparison (ASCII assumed)



LDAPv2 over SSL

• Data confidentiality protection needed to 
protect passwords during LDAP Simple 
Bind, as well as protect subsequent data 
exchange.

• While SSL provided for complete client 
verification of server X.509 certificate, 
server verification not commonly 
performed in early years.



Enter SASL

• RFC 2251 introduced SASL authentication 
to LDAP in 1997.

• Password-based SASL mechanisms at this 
time included PLAIN and CRAM-MD5.



PLAIN

• authcid + password

• plus an authzid for identity assumption

• Not much reason to use it (then or now) 
in LDAP, and generally not used in LDAP.



CRAM-MD5
• Primarily introduced to protect password 

during exchange.

• Used heavily in email protocols.

• Not generally used in LDAP as LDAP uses 
SSL to protect passwords.

• LDAP deployers generally wanted to not 
only to protect passwords during exchange, 
but protect all LDAP data.  Hence, CRAM-
MD5 did not offer much value.



DIGEST-MD5
• Introduced to address weaknesses of 

CRAM-MD5 and to provide compatibility 
with HTTP Digest.

• Provides for mutual authentication, but 
rarely properly implemented, rarely used.

• Provides for data integrity/confidential 
protection, but wasn’t well implemented 
and is not widely deployed.

• Provided for hashed password storage, but 
is a password equivalent.



Hashed Password 
Storage

• Introduced by RFC 2307 (Experimental)

• Compatible with use of Simple and PLAIN 
mechanisms and operating system login 
mechanism (e.g., crypt(3))

• Incompatible with DIGEST-MD5. 



Enter RFC 2829/2930

• Detailed use of SASL and TLS in LDAP, 
including introduction of the Start TLS 
operation and the DIGEST-MD5 
mandatory-to-implement requirement.

• Strongly encouraged use of TLS to protect 
Simple Bind (server authentication, 
confidentiality protection).



LDAP Password Modify

• RFC 3062 (Standard Track)

• Introduced to eliminate need for client to 
know where the user entry is, or where 
the password is, or how it’s to be prepared 
for storage, etc.

• Originally implemented in OpenLDAP, now 
broadly implemented (but not ubiquitous).



AuthPassword 
Introduced

• RFC 3112 (Informational)

• Intended to address abuse of userPassword 
to hold hashed user passwords

• No known implementations



Enter RFC 4422/4510

• SASL and LDAPv3 Revised

• Detailed handling of international user 
names and passwords

• LDAP Mandatory-to-Implement 
authentication mechanism changed to 
StartTLS+Simple w/ DN & Password



Current Situation

• Simple Bind with DN & Password over TLS 
(startTLS or ldaps://) is ubiquitous.

• TLS certification checks generally implemented 
well but often not used or used improperly.

• Use of hashed password storage is common 
(often required), commonly newer RFC 2307 
schemes such as Salted SHA1 or even Salted 
SHA2.



So what’s the problem?
• Users often send actual passwords without 

authenticating the server.

• User has to trust server with its actual 
password.  Server can impersonate user 
elsewhere.

• Server has to assume client properly 
implements server authentication AND it’s 
properly used.   Bad assumptions (especially 
the latter).



How does SCRAM 
address these 

problems?

• Actual password not sent.  Derived value 
sent is not reusable.

• Mutual authentication: Server must produce 
a response that demonstrates it knowledge 
of the user credentials.



SCRAM
Password Storage

• Authentication information held in the 
server is not sufficient to impersonate the 
user, and is salted.

• <insert example>

• Simple Bind compatible (including same 
internationalization)



But we still have a 
problem...

• Server has to assume client properly 
implements server authentication AND it’s 
properly used.   Bad assumptions (especially 
the latter).



And this is serious 
problem...

• Server not assured there is no 
man-in-middle.



Solution: SCRAM+
“Channel Bindings”

to TLS
• Proves to the client that the SCRAM server 

entity is also in control of the server TLS 
end-point.

• Proves to the server that the SCRAM 
server entity is also in control of the client 
TLS end-point. 
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Details

• SCRAM: RFC 5802

• TLS Channel Bindings: RFC xxxx

• Further reading: http://www.isode.com/
whitepapers/scram.html



Questions


