
Unified Authentication, Authorization and User Administration – An Open Source Approach

Ted C. Cheng, Howard Chu, Matthew Hardin

{tedcheng,hyc,mhardin}@symas.com

Introduction

Authentication, authorization, and user administration are critical components in secure

enterprise computing. This paper presents a unified architecture for authentication,

authorization, and user administration for Linux and Unix-variant environments. The

architecture aims at providing robustness, performance, scalability, high availability, and

low total cost of ownership (TCO) for enterprise deployments, while preserving the

compatibility with existing IT infrastructure. The design scales vertically and horizontally

by distributing workload among multiple OpenLDAP [1] servers. The flexible cache

configuration minimizes network access traffic, delivering the high performance

demanded by enterprise business needs. The design offers high availability via the

LDAP Sync Replication (syncrepl) [2] services.

Enterprises can deploy services in a modular and scalable manner based on corporate

geographical regions and organizational units. One or more servers can be deployed for

each geographical region to minimize cross-region access latency. Clients can further

be configured to access services for their respective organizational units from the

regional servers. The cache configuration on the client systems stores information

locally, eliminating redundant accesses to the regional but remote servers. This is

particularly critical for heavily loaded systems in which repeated service requests for the

same information can be handled via local cache.

The design of the unified authentication, authorization, and user administration

architecture is the result of the cumulative efforts of the open source community in the

past many years, involving technologies such as Name Service Switch (NSS), Network

Information Services (NIS/NIS+), Domain Name Services (DNS), Pluggable

Authentication Modules (PAM) [3], Lightweight Directory Access Protocol (LDAP) [4],

LDAP Content Synchronization, Secure Socket Layer/Transport Layer Security [5]

(SSL/TLS), OpenLDAP SLAPD, and so on.

This paper reviews the evolution of related technologies and provides an overview of

the architecture. The presentation then focuses on two distinct enhancements, i.e.,

LDAP client-side caching and disconnected operations, using the OpenLDAP Name-

Service Overlay (nssov) and the Proxy Cache [6] engine. The nssov overlay improves

the robustness of the design by addressing many issues in the PADL approach, while

the Proxy Cache engine offers persistent caching capability and takes advantage of the

connection pooling of the ldap backend.

Evolution of Related Technologies

Traditionally Unix-like systems require various name services to function properly. The

system local storage using flat files is constrained in terms of performance and

scalability. Furthermore, flat files cannot be readily shared by multiple systems, even

when those systems share the same configuration. Additional name service modules,

such as Network Information Services (NIS/NIS+), were developed to support

alternative database stores and facilitate data sharing.

Pluggable Authentication Modules (PAM) is a unified authentication framework in which

multiple modules can be stacked together to provide authentication services based on

the needs of each individual application. The framework further divides functionality into

authentication, account management, session management, and password modules

which can be implemented and plugged in separately.

As directories become popular in an enterprise IT infrastructure in which enterprise

information can be stored centrally and hierarchically in a distributed database, the

PADL [7] approach introduced two libraries, nss_ldap and pam_ldap, that integrate

LDAP directories into the aforementioned name services and pluggable authentication

framework.

The PADL approach was a big step forward and has become popular in many large

deployments. As the approach gained popularity, a number of opportunities for

improvement also surfaced. For example, the libraries that nss_ldap depends on may

conflict with those loaded by applications, when nss_ldap is built as a shared library. On

the other hand, applications may become bloated if nss_ldap is built as a static library.

In addition, applications loaded with nss_ldap may not be thread-safe due to the fact

that nss_ldap makes use of libraries that are not themselves thread-safe.

Furthermore, nss_ldap and pam_ldap provide very limited caching capability, which

poses performance issues, particularly over high latency or low-bandwidth networks.

Also there is no resource management for connections to LDAP servers, and both

nss_ldap and pam_ldap become non-functional when the LDAP servers are

disconnected.

The nss-pam-ldapd daemon [8] developed by Arthur de Jong and Howard Chu also

provides LDAP support for system name resolution, authentication, and authorization

services. The design includes nss_ldap and pam_ldap similar to the PADL’s approach,

except that those libraries do not issue LDAP client calls directly to LDAP servers.

Instead, the libraries communicate with the nss-pam-ldapd daemon via the NSLCD

protocol through a Unix domain socket. The approach modularized LDAP-related

functionalities into a separate process, which addressed many issues in the original

PADL design.

Unified Authentication, Authorization, and User Administration using OpenLDAP SLAPD and

its Extensions

The unified authentication, authorization, and user administration design replaces the

nss-pam-ldapd daemon with the SLAPD server, further making available full-fledged

SLAPD features such as performance, scalability, and high availability.

The architecture employs OpenLDAP Name-Service Overlay (nssov) which is

configured as part of the SLAPD server. The nssov overlay listens to a Unix domain

socket for service requests which can be serviced either by database backend(s) or by

remote, and possibly foreign, LDAP servers, taking advantage of the connection pooling

of the ldap backend as well as the persistent caching capability of the OpenLDAP Proxy

Cache engine. Furthermore, a replicated database provides the failover capability

during network outage, Figure 1.

Unix Domain

Socket (IPC)

NSLCD

protocol
nss_ldap

pam_ldap

NSLCD

protocol nssov

SLAPD

ldap

backend

+ proxy

cache

SLAPD + extensions

PAM-enabled applications

LDAP

ssh telnet ftp rsh sudo...

Figure 1 The unified authentication, authorization, and user administration architecture using

OpenLDAP SLAPD with Name-Service Overlay (nssov), ldap backend, and proxy cache

The design inherits the architecture enhancements from nss_ldap, pam_ldap, and nss-

pam-ldapd, with the added features of client-side caching, support for disconnected

operations, and LDAP connection sharing:

 The authentication, authorization, and user administration information can be

distributed in a hierarchical and scalable manner, contrasting the flat-file

approach.

 The system works alongside with existing solutions, such as NIS, NIS+, DNS,

and flat files.

 No application re-compilation or re-linking is needed.

 The LDAP library is not loaded with every process that accesses the services.

 There is no deadlock in host name lookup of LDAP server during boot process.

 Resource management is available for connections to LDAP servers.

 Cache extension can be configured to hide access latency.

 Replication is possible for high availability and disaster recovery.

 The design offers support for disconnected operations.

 Account management can be configured for policy compliance.

Sample architecture for enterprise deployments is illustrated in Figure 2. The

architecture employs two SLAPD servers as the directory backbone, each serving its

own regional information demands. Both SLAPD servers are configured with the same

suffix and with syncrepl for replication. Each regional directory server supports multiple

clients (organizational units); each client system is configured with a unified

authentication, authorization, and user administration module as depicted in Figure 1.

The architecture supports the following goals:

 Regional clients are serviced by their respective regional SLAPD servers. Cross-

region accesses by clients are reduced to a minimum, if not completely

eliminated.

 Cross-region replication can involve less-critical business information for local

regions, and therefore can be scheduled.

 Each client accesses its own sub-tree in the Directory Information Tree (DIT).

The modular approach offers scalability for enterprise business growth, as

naming space can be provisioned as new clients come on board.

 Each client is equipped with cache configuration. Repeated client accesses will

be resolved locally, which eliminates latencies for remote server accesses.

SLAPD
ou=NA

...

SLAPD
ou=EMEA

...

dc=example

dc=com

syncrepl

suffix:

dc=example,dc=com

suffix:

dc=example,dc=com

Unix Domain

Socket (IPC)

nss_ldap

pam_ldap

NSLCD

protocol nssov

SLAPD

ldap

backend

+ proxy

cache

SLAPD + extensions

PAM-enabled applications

LDAP

ssh telnet ftp rsh sudo...

Figure 2 Sample unified authentication, authorization, user administration architecture, using

the ldap backend and proxy cache, for enterprise deployments

The Name-Service (nssov) Overlay

The OpenLDAP overlays are software components that can be stacked together to

customize SLAPD behavior. The nssov overlay offers the additional NSLCD client

communication protocol to the SLAPD server.

The nssov overlay may be configured with Service Search Descriptors (SSDs) for each

NSS service:

nssov-ssd <service> <url>

where <service> may be one of the following: aliases, ethers, group, hosts, netgroup,

networks, passwd, protocols, rpc, services, shadow. The <url> must be of the form:

ldap:///[<basedn>][??[<scope>][?<filter>]]

The default <basedn> and <scope> are respectively first suffix of the current database
and subtree. The default <filter> depends on which service is being used.

For example, the nssov overlay may be configured with the OpenLDAP ldap backend

by adding the following to slapd.conf:
include <path to>nis.schema
moduleload <path to>nssov.la
database ldap
overlay nssov

nssov-ssd passwd ldap:///ou=users,dc=example,dc=com??one
nssov-ssd shadow ldap:///ou=users,dc=example,dc=com??one
nssov-ssd group ldap:///ou=group,dc=example,dc=com??one
nssov-ssd hosts ldap:///ou=hosts,dc=example,dc=com??one
nssov-ssd services ldap:///ou=services,dc=example,dc=com??one
nssov-ssd networks ldap:///ou=networks,dc=example,dc=com??one
nssov-ssd protocols ldap:///ou=protocols,dc=example,dc=com??one
nssov-ssd rpc ldap:///ou=rpc,dc=example,dc=com??one
nssov-ssd ethers ldap:///ou=hosts,dc=example,dc=com??one
nssov-ssd netgroup ldap:///ou=netgroup,dc=example,dc=com??one
nssov-ssd aliases ldap:///ou=aliases,dc=example,dc=com??one

If the local database is actually a proxy to a foreign LDAP server, mapping of schema

may be needed. Simple attribute substitutions may be performed using the following:

ldap://[%3cbasedn%3e][??[%3cscope%3e][?%3cfilter
ldap://ou=users,ou=suum,dc=example,dc=com??one
ldap://ou=users,ou=suum,dc=example,dc=com??one
ldap://ou=group,ou=suum,dc=example,dc=com??one
ldap://ou=hosts,ou=suum,dc=example,dc=com??one
ldap://ou=services,ou=suum,dc=example,dc=com??one
ldap://ou=networks,ou=suum,dc=example,dc=com??one
ldap://ou=protocols,ou=suum,dc=example,dc=com??one
ldap://ou=rpc,ou=suum,dc=example,dc=com??one
ldap://ou=hosts,ou=suum,dc=example,dc=com??one
ldap://ou=netgroup,ou=suum,dc=example,dc=com??one
ldap://ou=aliases,ou=suum,dc=example,dc=com??one

 nssov-map <service> <original attribute> <new attribute>

The overlay also supports dynamic configuration under “cn=config”. The layout of an

example configuration entry is as follows:

 dn: olcOverlay={0}nssov,olcDatabase={1}hdb,cn=config
 objectClass: olcOverlayConfig
 objectClass: olcNssOvConfig
 olcOverlay: {0}nssov
 olcNssSsd: passwd ldap:///ou=users,dc=example,dc=com??one
 olcNssMap: passwd uid accountName

which enables the passwd service and uses the accountName attribute to

fetch what is usually retrieved from the uid attribute.

PAM authentication, account management, session management, and password

management are supported.

The Proxy Cache Engine

The OpenLDAP Proxy Cache engine was designed to improve the responsiveness of

the ldap and meta backends. Instead of caching only individual entries, the proxy cache

stores data and semantic information corresponding to recently answered queries. The

cache manager implements the following three algorithms:

 Query containment algorithm decides whether an incoming search request is

semantically contained in any of the recently answered queries, e.g., (shoesize

>= 9) is contained in (shoesize >=8). A contained query is answerable from the

cache.

 Cache replacement algorithm determines when a query and entries should be

removed from the cache.

 Consistency control algorithm maintains the consistency between cached data

and the corresponding information stored in persistent data store.

The proxy cache handles a search query by first determining whether it is contained in

any cached search filter. Contained requests are answered from the proxy cache's local

database. Other requests are passed on to the underlying ldap or meta backend and

processed as usual. The LDAP matching rules and syntaxes are used while comparing

assertions for query containment.

ldap://ou=users,dc=example,dc=com??one

To simplify the query containment implementation, a list of cacheable templates

(defined below) is specified at configuration time. A query is cached or answered only if

it belongs to one of these templates. The entries corresponding to cached queries are

stored in the proxy cache local database, Berkeley DB or Memory-Mapped Database [9],

while their associated meta-information (filter, scope, base, attributes) is stored in main

memory. The design of Memory-Mapped Database improves over Berkeley DB on

cache management and lock management.

The string representation of prototype filters is similar to LDAP filters [10], except that

the assertion values are missing. A template is a prototype filter for generating LDAP

search requests. Search filters are templates associated with their respective list of

attribute values. Examples of prototype filters are (sn=) and (&(sn=)(givenname=))

which are instantiated by search filters (sn=Doe) and (&(sn=Doe)(givenname=John))

respectively.

The cache replacement policy removes the least recently used (LRU) query and entries

belonging to only that query. Queries are allowed a maximum time to live (TTL) in the

cache thus providing weak consistency. A background task periodically checks the

cache for expired queries and removes them.

The following directive enables proxy caching and defines the configuration parameters:

proxycache <db> <maxentries> <nattrsets> <entrylimit> <period>

The <db> parameter specifies the underlying database type which is used to hold the

cache entries. The <maxentries> parameter specifies the total number of entries that

may be held in the cache. The <nattrsets> parameter specifies the total number of

attribute sets that may be defined. The <entrylimit> parameter specifies the maximum

number of entries in a cacheable query. The <period> parameter specifies the

consistency checking period (in seconds). In each check period, queries with expired

TTL are removed.

The proxyAttrSet directive is used to associate a set of attributes to an index:

proxyAttrSet <index> <attrs …>

The proxyTemplate directive further associates a cacheable prototype filter and the

time-to-live (TTL) parameter with an index of an attribute set:

proxyTemplate <prototype filter> <attrset_index> <TTL>

The following sample SLAPD configuration defines the proxy attribute sets and proxy

template for user passwd and group services.

overlay proxycache
proxycache bdb 100000 11 1000 100
posixAccount
proxyAttrset 0 cn uid uidNumber gidNumber homeDirectory userPassword loginShell gecos
description objectClass
shadowAccount
proxyAttrset 1 uid userPassword shadowLastChange shadowMin shadowMax shadowWarning
shadowInactive shadowExpire shadowFlag description objectClass
posixGroup
proxyAttrset 2 cn gidNumber userPassword memberUid uniqueMember description objectClass

proxy templates
proxyTemplate (&(objectClass=)(uid=)) 0 3600
proxyTemplate (&(objectClass=)(uidNumber=)) 0 3600
proxyTemplate (objectClass=) 0 3600
proxyTemplate (&(objectClass=)(uid=)) 1 3600
proxyTemplate (&(objectClass=)(cn=)) 2 3600
proxyTemplate (objectClass=) 2 3600
proxyTemplate (&(objectClass=)(gidNumber=)) 2 3600
proxyTemplate (&(objectClass=)(|(memberUid=)(uniqueMember=)) 2 3600

Summary

The unified authentication, authorization, and user administration design offers

performance, scalability, and high availability for enterprise deployments, while

preserving the compatibility with existing IT infrastructure. The flexible design allows

authentication, authorization, and user administration services to be provisioned

modularly as business needs grow. The OpenLDAP nssov overlay and Proxy Cache

engine offer LDAP client-side caching and disconnected operations, as well as address

many robustness issues. The OpenLDAP Memory-Mapped Database improves Proxy

Cache in cache and lock management over the traditional Berkeley DB

implementations.The architecture has been based on open standards and evolved with

the collective efforts of the open source community for the past many years. The

implementation is contributed back to the open source community and freely available.

References

[1+ The OpenLDAP Project, “OpenLDAP Software 2.4 Administrator’s Guide,”

http://www.openldap.org/, March 28, 2011

*2+ K. Zeilenga, J.H. Choi, “The Lightweight Directory Access Protocol (LDAP) Content

Synchronization Operation,” RFC 4533, June 2006

http://www.openldap.org/

[3+ V. Samar, “Unified login with pluggable authentication modules (PAM),” Proceedings of

the 3rd ACM conference on computer and communications security, 1996, pp. 1-10

[4] J. Sermersheim, Ed., “Lightweight Directory Access Protocol (LDAP): The Protocol,” RFC

4511, June 2006

*5+ T. Dierks, C. Allen, “The TLS Protocol Version 1.0,” RFC 2246, January 1999

[6+ A. Kumar, “The OpenLDAP Proxy Cache,” IBM, India Research Lab,

http://www.openldap.org/pub/kapurva/proxycaching.pdf

[7] L. Howard, PADL nss_ldap and pam_ldap, www.padl.com

[8] A. de Jong, nss-ldapd and nss-pam-ldapd, http://arthurdejong.org

[9+ H. Chu, “MDB: A Memory-Mapped Database and Backend for OpenLDAP,” LDAPConf

2011, October 10-11, Heidelberg, Germany

[10+ M. Smith, T. Howes, “Lightweight Directory Access Protocol (LDAP): String

Representation of Search Filters,” RFC 4515, June 2006

Biographies

Ted C. Cheng is a Principal Software Engineer at Symas

Corporation. His R&D interests include on-demand computing,

provisioning internet services in cloud and enterprise

environments, performance, scalability, and high availability.

He received his Ph.D. degree in EE-Systems from the University

of Southern California in 1993 and has been in enterprise

computing and Open Source development ever since. He is a member

of IEEE.

Howard Chu is the Chief Architect of OpenLDAP and CTO of Symas

Corporation. Prior to founding Symas Corporation, Howard worked

at the U. Michigan, JPL, Locus Computing, and Platinum

Technology in software development roles. Howard is a prolific

contributor to the Open Source software community.

Matthew Hardin is a co-founder of Symas Corporation and

currently serves as its VP of Product Engineering. Throughout

his 30-plus-year career he has acquired in-depth experience with

embedded OS development, communications, server, and client

software development in a wide variety of environments.

http://www.openldap.org/pub/kapurva/proxycaching.pdf
http://www.padl.com/
http://arthurdejong.org/

