
Testing LDAP implementations

Emmanuel Lécharny, IKTEK

A LDAP based development cost can be spread over three phases :
- initial analysis
- development
- conformance tests

Each of those phases have more or less the same weight, one third of the
total cost. I believe that we can lower the third phase by factoring in the
tests globally during the development phase.

As developers must test their code, it's a good idea to use those unit
tests for conformance check.

My understanding is that doing so can lower the global cost by one sixth,
and reduce the cost of the third phase by more than 50%.

Testing an LDAP application is also a matter of checking its performances,
according to the expected requests. It should be possible to run
performances tests at different phases in the development, in order to
gather the different results and check that they are in line with the
expectations.

Testing for performances issues is about checking the different kinds of
items:
- request size (check the logs, check the requests)
- request duration
- index setting
- network latencies
- operation sequences (do you need to always bind/op/unbind ?)

We can use some dedicated tools to code those tests - we will provide an
overview of three different tools that can be used.

I Jmeter

Jmeter was initially created to record some HTTP tests, but has since its
inception extended to allow users to define some LDAP tests.

The good point about Jmeter is that it has a user-friendly UI, and it
generates some scripts that can be used offline, with agents running on
different computers. To some respect, it's similar to SLAMD, except that
it's not a dedicated tool.

Scenarii are way easier to create, as you don't need to code anything: you
just add new requests, and then configure them.

http://www.daasi.de/ldapcon2011/index.php?site=testing

1) Simple LDAP scenario

We will define a very simple test where we will bind on a server, add an
entry, do a search, do a delete and unbind.

We first create a test plan, as
exposed in the following snapshot.

Then, we have to add a ThreadGroup -
to set the number of injectors we will
use to run the scenario.

We can start with 20 threads (20 LDAP
sessions), and setting the number of
loops to 1000 for instance.

The next snapshot shows the
configuration of this Thread
Group.

Now, we can add a Bind request,
which is done by adding a
LdapExtended request Sampler.
The following picture shows what
is the configuration for this
initial bind request. Each
thread will execute this request first. Let's also add a unbind request to
close the session:

We can add a Listener to expose the results of a running test, and when we
run the test, we obtain the following result:

Test plan creation

Thread group creation

Unbind Request

As we can see, we obtain a throughput for each operation, plus the delay to
execute each operation.

Now, to show how easy it is to modify the test, we will add an Add, a
Search and a Delete requests.

As we can see, we had to use
the thread number in order to
avoid collisions when creating
entries from different
threads. This is done by using
the predefined variable
__threadNum.

We will use this variable in
the following requests.
Similarly for search and
deletion: we use the
__threadNum variable to avoid
collisions.

And when we run the test, we obtain the following result:

Bind/Unbind results

Add Request

Results

II Java Unit testing

We will now go a bit further, exploring how we can test an LDAP Application
written in Java using JUnit and Apache DirectoryServer

1) Basic unit test

The key is to define an LDAP Server before starting the test. We have
created some Java annotations to do that.

We first extend the AbstractLdapTestUnit class, which defines some common
fields, and then it's all about getting a connection and executing some
operation on it.

Here is an example:

@RunWith(FrameworkRunner.class)
@CreateDS(allowAnonAccess = true, name = "TestLdapServer")
@CreateLdapServer(
 transports =
 {
 @CreateTransport(protocol = "LDAP")
 })
public class SimpleServerTest extends AbstractLdapTestUnit
{

 /**
 * A simple test
 */
 @Test
 public void test() throws Exception
 {
 // Get an admin connection on the defined server
 LdapConnection connection = getWiredConnection(getLdapServer(), "uid=admin,ou=system",
"secret");

 // Check that we can read an entry
 assertNotNull(connection.lookup("ou=system"));

 // And close the connection
 connection.close();
 }
}

2) Improving the test with injection of entries

We may need to have a started server with some base entries already
present. This is very easy to do using the @ApplyLdifs annotation.

This lets you inject any consistent entry (assuming that the local schema
accepts it). In the following example, we add a new entry which we will
authenticate against. The remaining definition of the server is exactly the
same.

@RunWith(FrameworkRunner.class)
@ApplyLdifs(// Inject an entry
 {
 // Entry # 1
 "dn: uid=elecharny,ou=users,ou=system",
 "objectClass: uidObject",
 "objectClass: person",
 "objectClass: top",
 "uid: elecharny",
 "cn: Emmanuel Lécharny",
 "sn: lecharny",

 "userPassword: emmanuel"
 })
@CreateDS(allowAnonAccess = true, name = "TestLdapServer") // Define the DirectoryService
@CreateLdapServer(// Define the LDAP protocol layer
 transports =
 {
 @CreateTransport(protocol = "LDAP")
 })
public class LoadedServerTest extends AbstractLdapTestUnit
{

 /**
 * A test where we bind using the added entry credentials
 */
 @Test
 public void testBindUser() throws Exception
 {
 // Get a connection (not bound yet) on the server
 LdapConnection connection = getWiredConnection(getLdapServer());

 connection.bind("uid=elecharny,ou=users,ou=system", "emmanuel");

 // Check that we can read an entry
 assertNotNull(connection.lookup("uid=elecharny,ou=users,ou=system"));

 // And close the connection
 connection.close();
 }
}

Note that we can inject as many entries as we need, each new entry starting
with a 'dn:xxx' line. Also note that the entries order is significant, as
they will be injected from top to bottom.

We can also inject LDIF files, instead of injecting a bunch of ldif entries
in the test file. It's just a matter of using the @ApplyLdifFiles
annotation instead, as demonstrated in the following example:

@RunWith(FrameworkRunner.class)
@ApplyLdifFiles(// Inject an entry
 {
 "User1.ldif",
 "User2.ldif"
 })
@CreateDS(allowAnonAccess = true, name = "TestLdapServer") // Define the DirectoryService
@CreateLdapServer(// Define the LDAP protocol layer
 transports =
 {
 @CreateTransport(protocol = "LDAP")
 })
public class LdifFileServerTest extends AbstractLdapTestUnit
{

 /**
 * A test where we bind using the added entry credentials
 */
 @Test
 public void testBindUser() throws Exception
 {
 // Get a connection (not bound yet) on the server
 LdapConnection connection = getWiredConnection(getLdapServer());

 connection.bind("uid=elecharny,ou=users,ou=system", "emmanuel");

 // Check that we can read an entry
 assertNotNull(connection.lookup("uid=elecharny,ou=users,ou=system"));

 // and the second one
 assertNotNull(connection.lookup("uid=pamarcelot,ou=users,ou=system"));

 // And close the connection
 connection.close();
 }
}

Here we are reading two LDIF files:

User1.ldif :
dn: uid=elecharny,ou=users,ou=system
objectClass: uidObject
objectClass: person
objectClass: top
uid: elecharny
cn: Emmanuel Lécharny
sn: lecharny
userPassword: emmanuel

User2.ldif :
dn: uid=pamarcelot,ou=users,ou=system
objectClass: uidObject
objectClass: person
objectClass: top
uid: pamarcelot
cn: Pierre-Arnaud Marcelot
sn: marcelot
userPassword: pierre-arnaud

3) Adding a partition

We can now go a step further: by adding a Partition, we allow a user to
define a NamingContext, with some dedicated indexes. We can also create
more than one partition.

Those partitions will exist as long as the tests will run, then will be
deleted.

Here is an example where we define a partition with three indexes.

@RunWith(FrameworkRunner.class) // Define the DirectoryService
@CreateDS(
 name = "TestLdapServer",
 allowAnonAccess = true,
 partitions =
 {
 @CreatePartition(
 name = "example",
 suffix = "dc=example,dc=com",
 contextEntry = @ContextEntry(
 entryLdif =
 "dn: dc=example,dc=com\n" +
 "dc: example\n" +
 "objectClass: top\n" +
 "objectClass: domain\n\n"),
 indexes =
 {
 @CreateIndex(attribute = "objectClass"),
 @CreateIndex(attribute = "dc"),
 @CreateIndex(attribute = "ou")
 })
 })
@CreateLdapServer(// Define the LDAP protocol layer
 transports =
 {
 @CreateTransport(protocol = "LDAP")
 })
public class ServerWithPartitionTest extends AbstractLdapTestUnit
{

 /**
 * A simple test
 */
 @Test
 public void test() throws Exception
 {
 // Get an admin connection on the defined server
 LdapConnection connection = getWiredConnection(getLdapServer(), "uid=admin,ou=system",
"secret");

 // Check that we can read the Example context entry
 assertNotNull(connection.lookup("dc=example,dc=com"));

 // And close the connection
 connection.close();
 }
}

4) Saving some execution time

Every time we create a server, run a test, and stop it, we pay a price.
Typically, starting the server costs around a second. If we do that for
every test, the price will quickly be prohibitive.

Now, let's assume we can use one single server for a set of tests: we will
just start the server once, run all the tests, and stop the server. If we
have 100 tests, we save 99 seconds. In Apache Directory Server, we have
around 1000 tests, we can save as much as 20 minutes while running them.

So far, the way we defined the tests in the previous paragraphs allows us
to add more then one test per class.

Are we good then ? Not completely: what about data that might be created by
a test, and which can impact another test? Typically, one test may create
an entry without deleting it at the end, and the next test may also be
needed to create this same entry: we will have some error, as the entry
already exists. We can avoid such a situation by carefully reverting all
the modifications we made on each test, but this would be a very dull task.

We have a better solution: ApacheDS provides a ChangeLog facility that
stores all the modifications done on the server, and the test framework
uses this log to automatically revert the operations, computing the reverse
operation for each modification.

For instance, if you add an entry, then the system will delete it.

It works pretty well for almost all the operations except Aliases. It's
also activated by default.

Let's see how it works with two conflicting tests. At first, we will
disable the ChangeLog system

@RunWith(FrameworkRunner.class) // Define the DirectoryService
@CreateDS(
 name = "TestLdapServer",
 allowAnonAccess = true,
 enableChangeLog = false // Disable the changeLog tracking
)
@CreateLdapServer(// Define the LDAP protocol layer
 transports =
 {
 @CreateTransport(protocol = "LDAP")
 })
public class ServerWithRevertTest extends AbstractLdapTestUnit
{
 /**
 * A first test
 */
 @Test
 public void test1() throws Exception
 {
 // Get an admin connection on the defined server
 LdapConnection connection = getWiredConnection(getLdapServer(), "uid=admin,ou=system",

"secret");

 // Create a new entry
 connection.add(new DefaultEntry(
 "cn=test,ou=system",
 "objectClass: top",
 "objectClass: person",
 "cn: test",
 "sn: Test"));

 // Check that we can read an entry
 assertNotNull(connection.lookup("cn=test,ou=system"));

 // And close the connection
 connection.close();
 }

 /**
 * A second test
 */
 @Test
 public void test2() throws Exception
 {
 // Get an admin connection on the defined server
 LdapConnection connection = getWiredConnection(getLdapServer(), "uid=admin,ou=system",
"secret");

 // Create a new entry
 connection.add(new DefaultEntry(
 "cn=test,ou=system",
 "objectClass: top",
 "objectClass: person",
 "cn: test",
 "sn: Test"));

 // Check that we can read an entry
 assertNotNull(connection.lookup("cn=test,ou=system"));

 // And close the connection
 connection.close();
 }
}

Running those two tests, you will get this exception:

org.apache.directory.shared.ldap.model.exception.LdapEntryAlreadyExistsException:
ENTRY_ALREADY_EXISTS: failed for MessageType : ADD_REQUEST
Message ID : 2
 Add Request :
Entry
 dn[n]: cn=test,ou=system
 objectclass: top
 objectclass: person
 sn: Test
 cn: test
: ERR_250_ENTRY_ALREADY_EXISTS cn=test,ou=system already exists!

at
org.apache.directory.shared.ldap.model.message.ResultCodeEnum.processResponse(ResultCodeEnum.java:2035
)

at
org.apache.directory.ldap.client.api.LdapNetworkConnection.add(LdapNetworkConnection.java:698)
…

If you enable the ChangeLog system, the tests will pass. Just change the
parameter in @CreateDS:

@CreateDS(
 name = "TestLdapServer",
 allowAnonAccess = true,
 enableChangeLog = true // Allow changeLog to track modifications
)

You won't have errors (but remember that this parameter defaults to true).

Note that every entries added with @ApplyLdifs or @ApplyLdifFiles will be

reverted for every tests too. Keep in mind that those modifications are
costly operations, so if you have hundreds of entries to inject, the cost
of reversing them might be more expensive than not reversing them at all…

5) Ldap server scope

Sometimes, you may need to define some general LDAP server for all the
tests, but a few of them might need some specific configuration. The way
JUnit is designed allows you to aggregate tests in a class, and to
aggregate classes in a test suite. We follow this hierarchy by allowing the
user to define a Ldap Server in the suite - and it will be valid for all
the tests -, or in a single class - and it will then override the suite
server - or even for a single test.

First, let's see how we can define a server for a suite. No surprise, we
still use the same annotations:

@RunWith (FrameworkSuite.class)
@Suite.SuiteClasses ({
 // kerberos
 KeyDerivationServiceIT.class,
 PasswordPolicyServiceIT.class,

 // operations.add
 AddingEntriesWithSpecialCharactersInRDNIT.class,
 AddIT.class,

 // operations.bind
 BindIT.class,
 ...
 })
@CreateDS(
 name = "SuiteDS",
 partitions =
 {
 @CreatePartition(
 name = "example",
 suffix = "dc=example,dc=com",
 contextEntry = @ContextEntry(
 entryLdif =
 "dn: dc=example,dc=com\n" +
 "dc: example\n" +
 "objectClass: top\n" +
 "objectClass: domain\n\n"),
 indexes =
 {
 @CreateIndex(attribute = "objectClass"),
 @CreateIndex(attribute = "dc"),
 @CreateIndex(attribute = "ou")
 })
 })
@CreateLdapServer (
 transports =
 {
 @CreateTransport(protocol = "LDAP"),
 @CreateTransport(protocol = "LDAPS")
 })
public class StockServerISuite
{
}

Here, we have defined a partition, and initialized two different
transports, because we want to test LDAPS.

We could have injected some entries, but it's not necessarily a need at
this point. The only added entry is the contact entry.

Now, let see a complete example where we define may different LDAP server

at different level:

@CreateDS(name = "classDS")
public class DirectoryServiceAnnotationTest
{
 @Test
 public void testCreateDS() throws Exception
 {
 DirectoryService service = DSAnnotationProcessor.getDirectoryService();

 assertTrue(service.isStarted());
 assertEquals("classDS", service.getInstanceId());

 service.shutdown();
 FileUtils.deleteDirectory(service.getInstanceLayout().getInstanceDirectory());
 }

 @Test
 @CreateDS(name = "methodDS")
 public void testCreateMethodDS() throws Exception
 {
 DirectoryService service = DSAnnotationProcessor.getDirectoryService();

 assertTrue(service.isStarted());
 assertEquals("methodDS", service.getInstanceId());

 service.shutdown();
 FileUtils.deleteDirectory(service.getInstanceLayout().getInstanceDirectory());
 }

 @Test
 @CreateDS(
 name = "MethodDSWithPartition",
 partitions =
 {
 @CreatePartition(
 name = "example",
 suffix = "dc=example,dc=com",
 contextEntry = @ContextEntry(
 entryLdif =
 "dn: dc=example,dc=com\n" +
 "dc: example\n" +
 "objectClass: top\n" +
 "objectClass: domain\n\n"),
 indexes =
 {
 @CreateIndex(attribute = "objectClass"),
 @CreateIndex(attribute = "dc"),
 @CreateIndex(attribute = "ou")
 })
 })
 public void testCreateMethodDSWithPartition() throws Exception
 {
 DirectoryService service = DSAnnotationProcessor.getDirectoryService();

 assertTrue(service.isStarted());
 assertEquals("MethodDSWithPartition", service.getInstanceId());
 assertEquals(2, service.getPartitions().size());

 service.shutdown();
 FileUtils.deleteDirectory(service.getInstanceLayout().getInstanceDirectory());
 }

 @Test
 @CreateDS(
 name = "MethodDSWithPartitionAndServer",
 partitions =
 {
 @CreatePartition(
 name = "example",
 suffix = "dc=example,dc=com",
 contextEntry = @ContextEntry(
 entryLdif =
 "dn: dc=example,dc=com\n" +
 "dc: example\n" +
 "objectClass: top\n" +
 "objectClass: domain\n\n")
)
 })
 @CreateLdapServer (
 transports =
 {

 @CreateTransport(protocol = "LDAP"),
 @CreateTransport(protocol = "LDAPS")
 })
 public void testCreateLdapServer() throws Exception
 {
 // First, get the service
 DirectoryService service = DSAnnotationProcessor.getDirectoryService();

 // Check that the service is running
 assertTrue(service.isStarted());
 assertEquals("MethodDSWithPartitionAndServer", service.getInstanceId());
 assertEquals(2, service.getPartitions().size());

 assertTrue(service.getAdminSession().exists(new Dn("dc=example,dc=com")));

 // Now, get the server
 LdapServer ldapServer = ServerAnnotationProcessor.getLdapServer(service);

 // Check that the server is running
 assertTrue(ldapServer.isStarted());

 ldapServer.stop();
 service.shutdown();

 FileUtils.deleteDirectory(service.getInstanceLayout().getInstanceDirectory());
 }
}

Note that the Ldap protocol network layer may be different, and one can
define a specific port for a specific server. However, those ports are
automatically selected not to conflict with any existing port.

6) Injecting Schema elements

Adding some new Schema elements is as easy as injecting the associated LDIF
entries. This example demonstrates the injection of an AttributeType and an
ObjectClass (you only need to know where in your server the
SubschemaSubentry is stored)

 @Test
 @CreateDS(name="SchemaAddAT-test")
 @ApplyLdifs(
 {
 // Inject an AT
 "dn: cn=schema",
 "changetype: modify",
 "add: attributeTypes",
 "attributeTypes: (1.3.6.1.4.1.65536.0.4.3.2.1 NAME 'templateData' DESC 'template data'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5 SINGLE-VALUE X-SCHEMA 'other')",
 "-",

 // Inject an OC
 "dn: cn=schema",
 "changetype: modify",
 "add: objectClasses",
 "objectClasses: (1.3.6.1.4.1.65536.0.4.3.2.2 NAME 'templateObject' DESC 'test OC' SUP top
STRUCTURAL MUST (templateData $ cn) X-SCHEMA 'other')",
 "-"
 }
)
 public void testAddAttributeTypeObjectClassSubSchemaSubEntry() throws Exception
 {
 checkAttributeTypePresent("1.3.6.1.4.1.65536.0.4.3.2.1", "other", true);
 checkObjectClassPresent("1.3.6.1.4.1.65536.0.4.3.2.2", "other", true);

 // sync operation happens anyway on shutdowns but just to make sure we can do it again
 getService().sync();

 getService().shutdown();
 getService().startup();

 checkAttributeTypePresent("1.3.6.1.4.1.65536.0.4.3.2.1", "other", true);

 checkObjectClassPresent("1.3.6.1.4.1.65536.0.4.3.2.2", "other", true);
 }

7) Defining two LdapServer

When testing replication, it's important to define two different servers.
The annotations we have defined can be used for single methods which are
not tests. Let's see how we design a test where two servers are created,
one consumer and one provider:

public class ClientServerReplicationIT
{
 private static LdapServer providerServer;

 private static LdapServer consumerServer;

 private static SchemaManager schemaManager;

 @BeforeClass
 public static void setUp() throws Exception
 {
 Class<?> justLoadToSetControlProperties = Class.forName(FrameworkRunner.class.getName());
 startProvider();
 startConsumer();
 }

 @AfterClass
 public static void tearDown()
 {
 consumerServer.stop();
 providerServer.stop();
 }

 @CreateDS(
 allowAnonAccess = true,
 name = "provider-replication",
 enableChangeLog = false,
 partitions =
 {
 @CreatePartition(
 name = "example",
 suffix = "dc=example,dc=com",
 indexes =
 {
 @CreateIndex(attribute = "objectClass"),
 @CreateIndex(attribute = "dc"),
 @CreateIndex(attribute = "ou")
 },
 contextEntry=@ContextEntry(entryLdif =
 "dn: dc=example,dc=com\n" +
 "objectClass: domain\n" +
 "dc: example"))
 })
 @CreateLdapServer(transports =
 { @CreateTransport(port=16000, protocol = "LDAP") })
 public static void startProvider() throws Exception
 {
 DirectoryService provDirService = DSAnnotationProcessor.getDirectoryService();

 providerServer = ServerAnnotationProcessor.getLdapServer(provDirService);
 providerServer.setReplicationReqHandler(new SyncReplRequestHandler());
 providerServer.startReplicationProducer();

 // init the provider...
 }

 @CreateDS(
 allowAnonAccess = true,
 enableChangeLog = false,
 name = "consumer-replication",
 partitions =
 {
 @CreatePartition(
 name = "example",
 suffix = "dc=example,dc=com",
 indexes =
 {
 @CreateIndex(attribute = "objectClass"),
 @CreateIndex(attribute = "dc"),
 @CreateIndex(attribute = "ou")

 },
 contextEntry=@ContextEntry(entryLdif =
 "dn: dc=example,dc=com\n" +
 "objectClass: domain\n" +
 "dc: example"))
 })
 @CreateLdapServer(transports =
 { @CreateTransport(port=17000, protocol = "LDAP") })
 @CreateConsumer
 (
 remoteHost = "localhost",
 remotePort = 16000,
 replUserDn = "uid=admin,ou=system",
 replUserPassword = "secret",
 useTls = false,
 baseDn = "dc=example,dc=com",
 refreshInterval = 1000,
 replicaId = 1
)
 public static void startConsumer() throws Exception
 {
 DirectoryService provDirService = DSAnnotationProcessor.getDirectoryService();
 consumerServer = ServerAnnotationProcessor.getLdapServer(provDirService);

 final ReplicationConsumerImpl consumer =
(ReplicationConsumerImpl)ServerAnnotationProcessor.createConsumer();

 List<ReplicationConsumer> replConsumers = new ArrayList<ReplicationConsumer>();
 replConsumers.add(consumer);

 consumerServer.setReplConsumers(replConsumers);
 consumerServer.startReplicationConsumers();

 // init the consumer...
 }

 ...

In this example, we have defined two servers listing on two different
ports. We can also see that we have defined a specific @CreateConsumer
annotations in order to configure the consumer.

III Schema aware API
One of the major issues when writing a Java application interfaced with a
LDAP browser is that the existing API are not schema aware. The direct
implication is clear when we get the data back from the server and we try
to compare them locally.

For instance, many AttributeTypes aren't case sensible. Here is an example
that expose the potential problem one may encounter:

 @ApplyLdifs(
 {
 // Entry # 1
 "dn: cn=Test Lookup,ou=system",
 "objectClass: person",
 "cn: Test Lookup",
 "sn: sn test" })
 public void testLookupCn() throws Exception
 {
 LdapConnection connection = getWiredConnection(getLdapServer(), "uid=admin,ou=system",
"secret");
 Entry entry = connection.lookup("cn=test lookup,ou=system", "cn");
 assertNotNull(entry);

 // Check that we don't have any operational attributes :
 // We should have only 3 attributes : objectClass, cn and sn
 assertEquals(1, entry.size());

 // Check that all the user attributes are present
 assertTrue(entry.contains("cn", "Test Lookup"));
 assertFalse(entry.contains("cn", "test lookup"));
 assertFalse(entry.contains("2.5.4.3", "test lookup"));
 assertFalse(entry.contains("CN", " test LOOKUP "));
 }
}

As we can see, we are not allowed to fetch the value using another form
than 'cn' (even if CommonName or 2.5.4.3 are valid identifiers for this
AttributeType), and we must compare the value to what has been stored in
the server, even if 'cn' is not case sensitive...

How can we proceed? The best solution is to use a Schema Aware API. Apache
LDAP API provides such a mechanism. Let's see how it works...

 public void testLookupCnSchemaAware() throws Exception
 {
 LdapConnection connection = getWiredConnection(getLdapServer(), "uid=admin,ou=system",
"secret");

 // Make the connection schema aware
 connection.loadSchema();

 Entry entry = connection.lookup("cn=test lookup,ou=system", "cn");
 assertNotNull(entry);

 // Check that we don't have any operational attributes :
 // We should have only 3 attributes : objectClass, cn and sn
 assertEquals(1, entry.size());

 // Check that all the user attributes are present
 assertTrue(entry.contains("cn", "Test Lookup"));
 assertTrue(entry.contains("cn", "test lookup"));
 assertTrue(entry.contains("2.5.4.3", "test lookup"));
 assertTrue(entry.contains("CN", " test LOOKUP "));
 }

The only difference is that we have asked the connection to load the
default schema. It's now possible to do some extended (and valid)
comparisons like entry.contains("CN", " test LOOKUP ").

Such an API makes it really convenient for developers to write their
applications, as they don't have to take care of case sensitivity issues,
as they happen when using, say, JNDI.

IV Future developments
We have some few other ideas to make it even easier to test LDAP
applications and servers.

One of them is to 'reboot' the SLAMD effort, providing a mix of the SLAMD
power and the Jmeter convenience. An idea would be to use Apache Directory
Studio UI as a base to record a scenario, and to generate a script from it.
This script will then be executed on many agents, and Studio will gather
the results to provide a performance graph.

Another aspect would be to generate the associated unit tests, runnable in
maven or ant.

We would also like to make the annotations able to handle another LDAP
server, including OpenLDAP or OpenDJ. You will then be able to write your
tests using the Apache LDAP API, but target a specific server.

	I Jmeter
	II Java Unit testing
	III Schema aware API
	IV Future developments

