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Replication configuration

Managing replication topology

Goals: 
● Identical data on any server participating in replication
● Concurrent updates and any server

Method in 389-ds:
● Replay modifications between servers (defined by Replication Agreements)
● Perform update resoution to resolve conflicts

Replication Agreements:
● Target server: replication endpoint for push replication
● Transport: secure, startTLS, unsecure,...
● Authorization: bind dn, principal,....
● Content: fractional replication

Replication agreements are similar on all servers, but
● Number of agreements can differ
● Content definition can differ, eg full replication in one subset, fractional to the rest
● Transport can differ: different securtity levels between different servers

So, replicating cn=config does not help.
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Replication topology
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Challenges in IPA replication management 

 Situation:
● two suffixes (or more)

● one for user, hosts, services, ...
● one for certificates for certificate servername
● additional user defined

● one suffix available on all servers, the other on a subset only
● deployments with high number of replicas (20-30 quite common)
● highly dynamic, frequent addition and removal of replicas

Questions:
● are all servers connected ?
● is there a single point of failure ?
● can a server safely be removed without disconnecting the topology ?

Problem: Required information is distributed across the topology
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Requirements for replication management

● allow management of the replication topology on a single 
server

● verify the degree of connectivity
● initiate online initialization from one remote server to 

another
● add and delete connections between any servers
● check if removal of a segment would disconnect the 

topology or if a segment to be added already exists.
● simplify the topology management via command line 

interface and Web UI. 
● allow replication monitoring by querying a single server
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New replication management

Represent replication configuration in objects in a replicated database
- managed servers, managed suffixes, replication connections
- either in dedicated suffix or suffix available on all servers

==> complete information available on any server

Deploy 389-ds plugin to manage local replication configuration based on
data in shared tree. 

- config in shared tree is authoritative, overrides local conf
- enables sanity checks for any attempted configuration change

==> topology config is consistent and valid across all servers 
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Changes to entries in cn=config

Add topology plugin:

dn: cn=IPA Toplogy Configuration,cn=plugins,cn=config
objectClass: top
objectClass: nsSlapdPlugin
....
nsslapd­pluginEnabled: on
nsslapd­topo­plugin­shared­config­base: cn=topology,cn=etc,dc=example,dc=com

The only required configuration setting is the base entry for topology 
information 

Replication agreements are marked, managed by the topology plugin:

dn: cn=meTovm­072.idm.lab,cn=replica,cn=dc\3Dexample\2Cdc\3Dcom,cn=mapping tree,cn=config
objectClass: nsds5replicationagreement
objectClass: top
objectClass: ipaReplTopoManagedAgreement
................
ipaReplTopoManagedAgreementState: managed agreement ­ controlled by topology plugin
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Topology management objects: Managed servers

For each server in the topology an entry defines which suffixes should 
be managed by the topology plugin.

[Unmanaged suffixes may exist, if instances are used to contain backends 
without relation to IPA, but they  could use the topology management as well.]

dn: cn=vm­072.idm.lab,cn=masters,cn=ipa,cn=etc,dc=example,dc=com
objectClass: top
objectClass: nsContainer
objectClass: ipaReplTopoManagedServer
objectClass: ipaConfigObject
cn: vm­072.abgc.idm.lab.eng.brq.redhat.com
ipaReplTopoManagedSuffix: dc=example,dc=com
paReplTopoManagedSuffix: o=ipaca
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Topology management objects: Suffixes

cn=topology, <topology management based dn> is a container for all managed suffixes

A managed suffix is a container for all replication connections 

A managed suffix defines 
● Default replication connection settings, eg

● use GSSAPI
● strip specific attributes from replication
● ...

● Connectivity requirements
● How many independent paths beteween servers must exist

● Monitoring control
● Continuous monitoring
● Ad hoc monitoring requests, which will then be poropagated across the topology

dn: cn=realm,cn=topology,cn=ipa,cn=etc,dc=abc,dc=example,dc=com
objectClass: top
objectClass: iparepltopoconf
ipaReplTopoConfRoot: dc=example,dc=com
nsDS5ReplicatedAttributeList: xxxxxxx
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Topology management objects: Segments

A segment is the representation of one or two replication agreements between two 
servers
It is defined by:

● Endpoints: leftnode, rightnode (fqdn of two managed servers)
● Connectivity: left-right, right-left, both

In addition, properties of the represented agreements can be set
● Transport
● Fractional attributes
● Init: adding a “refresh” attribute will trigger online initialization, will be reset 

automatically

Segments are also used in monitoring, as segments can track the status of 
corresponding agreements
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Topology management objects: Example

dn: cn=topology,dc=example,dc=com
     │ ├── objectclass: nsContainer
│

 ├── cn=replica example,cn=topology,dc=example,dc=com
         │ │ ├── objectClass: ipaReplTopoConf
         │ │ └── ipaReplTopoConfRoot: dc=example,dc=com
   │ │
     │ ├── cn=111­to­102,cn=replica example,cn=topology,dc=example,dc=com
         │ │ ├── objectClass: ipaReplTopoSegment
         │ │ ├── ipaReplTopoSegmentDirection: both
         │ │ ├── ipaReplTopoSegmentLeftNode: vm­111.idm.lab
         │ │ ├── ipaReplTopoSegmentRightNode: vm­102.idm.lab
         │ │ ├── nsds5ReplicaEnabled;right: on
         │ │ ├── nsds5ReplicaEnabled;left: off
         │ │ ├── nsDS5ReplicatedAttributeList: (objectclass=*) $ EXCLUDE krblastfailedauth krbloginfailedcount        
         │ │ └── nsds5ReplicaStripAttrs;left: modifiersName modifyTimestamp
   │ │
     │ └── cn=111­to­191,cn=replica example,cn=topology,dc=example,dc=com
         │ ├── objectClass: ipaReplTopoSegment
         │ ├── ipaReplTopoSegmentDirection: left­to­right
         │ ├── ipaReplTopoSegmentLeftNode: vm­111.idm.lab
         │ ├── ipaReplTopoSegmentRightNode: vm­191.idm.lab
         │ └── ....
│

 └── cn=replica ipaca,cn=topology,dc=example,dc=com
         │ ├── objectClass: ipaReplTopoConf
         │ └── ipaReplTopoConfRoot: o=ipaca
   │
     └── cn=111­to­191,cn=replica example,cn=topology,dc=example,dc=com
         ├── ipaReplTopoSegmentDirection: both
         ├── ipaReplTopoSegmentLeftNode: vm­111.idm.lab
         ├── ipaReplTopoSegmentRightNode: vm­191.idm.lab
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Topology plugin operation: startup and preop

Startup 
● Build internal graph of replication topology based on data inshared tree
● Compare topology information with local config

● shared tree is authoritative, remove local agreements not covered by topology
● In upgrade scenarios or when servers become managed, local config is auto 

transformed in to topology data

Preop
● Reject direct modification of local agreements in cn=config
● Reject addding duplicate connections
● Reject removal of segments which would result in disconnected topology 
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Topology plugin operation: postop

Successful modification of topology objects triggers update of local configuration

● New segment ==> new agreement(s)
● If segment is one directional and segment for opposite direction exists ==> merge
● If suffix becomes managed and local agreements exist ==> autogenerate segments
● If managed server is removed ==> remove all segments connecting this server ==> 

remove corresponding agreements

If monitoring request for suffix is received ==> check status of local agreements and 
update segments
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Topology plugin use:  monitoring

Replicated topology configuration can be used for replication monitoring.

Scenario for checking: replication status in the complete topology:

● Add monitoring request attribute in managed suffix entry on server X
● This is replicated to all servers
● Each server checks the status of the local agreements and updates the 

corresponding segments
● Status update will be replicated to all servers, including X
● X can compare received update status with topology graph and determine 

connection failures
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Topology plugin use:  graphical user interface

< demo >

As all topology information is available on all servers and change in topology can be 
triggered on any server this simplifies the topology management from the command line 
and from a web interface.

The topology graph can be easily visualized by contacting only one server, update can 
directly be applied.
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