
Innovative replication
management in FreeIPA

Ludwig Krispenz <lkrispen@redhat.com>
Petr Vobornik <pvoborni@redhat.com>
Edinburgh, Nov, 12th, 2015

mailto:lkrispen@redhat.com

Managing replication topology 2

Replication configuration

Managing replication topology

Goals:
● Identical data on any server participating in replication
● Concurrent updates and any server

Method in 389-ds:
● Replay modifications between servers (defined by Replication Agreements)
● Perform update resoution to resolve conflicts

Replication Agreements:
● Target server: replication endpoint for push replication
● Transport: secure, startTLS, unsecure,...
● Authorization: bind dn, principal,....
● Content: fractional replication

Replication agreements are similar on all servers, but
● Number of agreements can differ
● Content definition can differ, eg full replication in one subset, fractional to the rest
● Transport can differ: different securtity levels between different servers

So, replicating cn=config does not help.

Managing replication topology 3

Replication topology

Managing replication topology

Replicated suffix

Managed server

Replication connection

A

A

C

B

E
D

Server B is single point
of failure in the green
topology

Managing replication topology 4

Challenges in IPA replication management

 Situation:
● two suffixes (or more)

● one for user, hosts, services, ...
● one for certificates for certificate servername
● additional user defined

● one suffix available on all servers, the other on a subset only
● deployments with high number of replicas (20-30 quite common)
● highly dynamic, frequent addition and removal of replicas

Questions:
● are all servers connected ?
● is there a single point of failure ?
● can a server safely be removed without disconnecting the topology ?

Problem: Required information is distributed across the topology

Managing replication topology 5

Requirements for replication management

● allow management of the replication topology on a single
server

● verify the degree of connectivity
● initiate online initialization from one remote server to

another
● add and delete connections between any servers
● check if removal of a segment would disconnect the

topology or if a segment to be added already exists.
● simplify the topology management via command line

interface and Web UI.
● allow replication monitoring by querying a single server

Managing replication topology 6

New replication management

Represent replication configuration in objects in a replicated database
- managed servers, managed suffixes, replication connections
- either in dedicated suffix or suffix available on all servers

==> complete information available on any server

Deploy 389-ds plugin to manage local replication configuration based on
data in shared tree.

- config in shared tree is authoritative, overrides local conf
- enables sanity checks for any attempted configuration change

==> topology config is consistent and valid across all servers

Managing replication topology 7

Changes to entries in cn=config

Add topology plugin:

dn: cn=IPA Toplogy Configuration,cn=plugins,cn=config
objectClass: top
objectClass: nsSlapdPlugin
....
nsslapd­pluginEnabled: on
nsslapd­topo­plugin­shared­config­base: cn=topology,cn=etc,dc=example,dc=com

The only required configuration setting is the base entry for topology
information

Replication agreements are marked, managed by the topology plugin:

dn: cn=meTovm­072.idm.lab,cn=replica,cn=dc\3Dexample\2Cdc\3Dcom,cn=mapping tree,cn=config
objectClass: nsds5replicationagreement
objectClass: top
objectClass: ipaReplTopoManagedAgreement
................
ipaReplTopoManagedAgreementState: managed agreement ­ controlled by topology plugin

Managing replication topology 8

Topology management objects: Managed servers

For each server in the topology an entry defines which suffixes should
be managed by the topology plugin.

[Unmanaged suffixes may exist, if instances are used to contain backends
without relation to IPA, but they could use the topology management as well.]

dn: cn=vm­072.idm.lab,cn=masters,cn=ipa,cn=etc,dc=example,dc=com
objectClass: top
objectClass: nsContainer
objectClass: ipaReplTopoManagedServer
objectClass: ipaConfigObject
cn: vm­072.abgc.idm.lab.eng.brq.redhat.com
ipaReplTopoManagedSuffix: dc=example,dc=com
paReplTopoManagedSuffix: o=ipaca

Managing replication topology 9

Topology management objects: Suffixes

cn=topology, <topology management based dn> is a container for all managed suffixes

A managed suffix is a container for all replication connections

A managed suffix defines
● Default replication connection settings, eg

● use GSSAPI
● strip specific attributes from replication
● ...

● Connectivity requirements
● How many independent paths beteween servers must exist

● Monitoring control
● Continuous monitoring
● Ad hoc monitoring requests, which will then be poropagated across the topology

dn: cn=realm,cn=topology,cn=ipa,cn=etc,dc=abc,dc=example,dc=com
objectClass: top
objectClass: iparepltopoconf
ipaReplTopoConfRoot: dc=example,dc=com
nsDS5ReplicatedAttributeList: xxxxxxx

Managing replication topology 10

Topology management objects: Segments

A segment is the representation of one or two replication agreements between two
servers
It is defined by:

● Endpoints: leftnode, rightnode (fqdn of two managed servers)
● Connectivity: left-right, right-left, both

In addition, properties of the represented agreements can be set
● Transport
● Fractional attributes
● Init: adding a “refresh” attribute will trigger online initialization, will be reset

automatically

Segments are also used in monitoring, as segments can track the status of
corresponding agreements

Managing replication topology 11

Topology management objects: Example

dn: cn=topology,dc=example,dc=com
 │ ├── objectclass: nsContainer
│

 ├── cn=replica example,cn=topology,dc=example,dc=com
 │ │ ├── objectClass: ipaReplTopoConf
 │ │ └── ipaReplTopoConfRoot: dc=example,dc=com
 │ │
 │ ├── cn=111­to­102,cn=replica example,cn=topology,dc=example,dc=com
 │ │ ├── objectClass: ipaReplTopoSegment
 │ │ ├── ipaReplTopoSegmentDirection: both
 │ │ ├── ipaReplTopoSegmentLeftNode: vm­111.idm.lab
 │ │ ├── ipaReplTopoSegmentRightNode: vm­102.idm.lab
 │ │ ├── nsds5ReplicaEnabled;right: on
 │ │ ├── nsds5ReplicaEnabled;left: off
 │ │ ├── nsDS5ReplicatedAttributeList: (objectclass=*) $ EXCLUDE krblastfailedauth krbloginfailedcount
 │ │ └── nsds5ReplicaStripAttrs;left: modifiersName modifyTimestamp
 │ │
 │ └── cn=111­to­191,cn=replica example,cn=topology,dc=example,dc=com
 │ ├── objectClass: ipaReplTopoSegment
 │ ├── ipaReplTopoSegmentDirection: left­to­right
 │ ├── ipaReplTopoSegmentLeftNode: vm­111.idm.lab
 │ ├── ipaReplTopoSegmentRightNode: vm­191.idm.lab
 │ └──
│

 └── cn=replica ipaca,cn=topology,dc=example,dc=com
 │ ├── objectClass: ipaReplTopoConf
 │ └── ipaReplTopoConfRoot: o=ipaca
 │
 └── cn=111­to­191,cn=replica example,cn=topology,dc=example,dc=com
 ├── ipaReplTopoSegmentDirection: both
 ├── ipaReplTopoSegmentLeftNode: vm­111.idm.lab
 ├── ipaReplTopoSegmentRightNode: vm­191.idm.lab

Managing replication topology 12

Topology plugin operation: startup and preop

Startup
● Build internal graph of replication topology based on data inshared tree
● Compare topology information with local config

● shared tree is authoritative, remove local agreements not covered by topology
● In upgrade scenarios or when servers become managed, local config is auto

transformed in to topology data

Preop
● Reject direct modification of local agreements in cn=config
● Reject addding duplicate connections
● Reject removal of segments which would result in disconnected topology

Managing replication topology 13

Topology plugin operation: postop

Successful modification of topology objects triggers update of local configuration

● New segment ==> new agreement(s)
● If segment is one directional and segment for opposite direction exists ==> merge
● If suffix becomes managed and local agreements exist ==> autogenerate segments
● If managed server is removed ==> remove all segments connecting this server ==>

remove corresponding agreements

If monitoring request for suffix is received ==> check status of local agreements and
update segments

Managing replication topology 14

Topology plugin use: monitoring

Replicated topology configuration can be used for replication monitoring.

Scenario for checking: replication status in the complete topology:

● Add monitoring request attribute in managed suffix entry on server X
● This is replicated to all servers
● Each server checks the status of the local agreements and updates the

corresponding segments
● Status update will be replicated to all servers, including X
● X can compare received update status with topology graph and determine

connection failures

Managing replication topology 15

Topology plugin use: graphical user interface

< demo >

As all topology information is available on all servers and change in topology can be
triggered on any server this simplifies the topology management from the command line
and from a web interface.

The topology graph can be easily visualized by contacting only one server, update can
directly be applied.

	CONTAINERS BASED ON RED HAT SOFTWARE COLLECTIONS
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

