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Conflict scenarios: concurrent 
updates

* We talk about “performing operations at the same time” or “simultaneously” or 
“independently”. This doesn’t require the operations to be processed at exactly the 
same time, it means that operations on one server are performed before the 
operations on an other are received via replication. In the following examples we 
always assume that servers are in sync, operations are applied on severals servers 
before the next synchronization and then servers are synchronized again 

In a replication topology with loose consistency replication 
conflicts can occur if updates are applied concurrently* on 
different masters
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 concurrency model (1)
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concurrency model (2)
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Conflict scenarios: simple conflict

● Add cn=s2 on master1 and and master2 at the same time

● Result (in previous 389-ds):

dn: cn=s2+nsuniqueid=0bc0130a-0a2e11e7-b268a04a-
                                   bdab994e,cn=test_0,dc=example,dc=com
dn: cn=s2,cn=test_0,dc=example,dc=com
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Conflict Scenarios: orphaned entries

Time Master 1 Master 2

t1 Del P

t2 Add child C of P
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Conflict scenarios: 
composite conflicts
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Conflict scenarios:  
conflicts with children(1)

● Add cn=p2 on master1 and and master2 at the same time

● Add child cn=c2 on master1 and cn=c3 on master2

Time Master 1 Master 2

t1 Add P2

t2 Add P2

t3 Add Child C3 of P

t4 Add child C2 of P
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Conflict scenarios:  
conflicts with children(2)

● Result (in previous 389-ds)

dn: cn=p2,cn=test_4,dc=example,dc=com

dn: cn=p2+nsuniqueid=8f79ffb5-...-4dccfc06,cn=test_4,dc=example,dc=com

dn: cn=c3,cn=p2+nsuniqueid=8f79ffb5-…..-4dccfc06,cn=test_4,dc=example,dc=com

dn: cn=c2,cn=p2,cn=test_4,dc=example,dc=com
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Current solutions: 389-ds

● Simple conflict: 

– If two entries with the same dn are added concurrently, one is 
transformed into a conflict entry

– On all masters the same entry will become a conflict

● Orphaned entries:

– Resurrect the deleted entry and keep as glue entry

● Other cases: apply operation on the replica to the entry with the 
specified nsuniqueid
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Current solutions: other vendors

OpenDJ (forgerock), UnboundID: they create conflict 
entries by adding a unique identifier to the dn of the conflict entry. 
UnboundID claims that conflict entries are invisible.

https://ping.force.com/Support/PingIdentityArticle?id=kA340000000PMwBCA
W

https://bugster.forgerock.org/jira/browse/OPENDJ-454

Active Directory: Active directory also has a similar procedure 
to deal with naming conflicts, creating conflict entries with unified dn

https://social.technet.microsoft.com/wiki/contents/articles/15435.active-direc
tory-duplicate-object-name-resolution.aspx

OpenLDAP: no explicit handling but creates inconsistencies ins 
some of the ADD-DEL or ADD-MODRDN scenarios

https://ping.force.com/Support/PingIdentityArticle?id=kA340000000PMwBCAW
https://ping.force.com/Support/PingIdentityArticle?id=kA340000000PMwBCAW
https://bugster.forgerock.org/jira/browse/OPENDJ-454
https://social.technet.microsoft.com/wiki/contents/articles/15435.active-directory-duplicate-object-name-resolution.aspx
https://social.technet.microsoft.com/wiki/contents/articles/15435.active-directory-duplicate-object-name-resolution.aspx
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Problems with current solution

● Confusion
● Inconsistencies
● Plugin messup
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Problems: plugins - memberof

● Simple conflict and memberof

● Add group cn=g1 on master1 and and master2 at the same time

● Result 

dn: cn=g1+nsuniqueid=68bbc90a-...-4dccfc06,cn=test_2,dc=example,dc=com
member: cn=m2_1,cn=test_2,dc=example,dc=com

dn: cn=g1,cn=test_2,dc=example,dc=com
member: cn=m2_1,cn=test_2,dc=example,dc=com

dn: cn=m2_1,cn=test_2,dc=example,dc=com
memberOf: cn=g1+nsuniqueid=68bbc90a-...-4dccfc06,cn=test_2,dc=example,dc=com
memberOf: cn=g1,cn=test_2,dc=example,dc=com
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Problems: plugins – managed entry

● Simple conflict and managed entry

● Add cn=user2 on master1 and and master2 at the same time

● Result 

dn: cn=user2,ou=managed_groups,dc=example,dc=com
mepmanagedentry: cn=user2,ou=managed_groups,dc=example,dc=com

dn: cn=user2+nsuniqueid=8f79...-4dccfc06,ou=managed_groups,dc=example,dc=com
mepmanagedentry: cn=user2,ou=managed_groups,dc=example,dc=com

dn: nsuniqueid=8f79...4dccfc06+uid=user2,ou=managed_people,dc=example,dc=com
mepmanagedby: uid=user2,ou=managed_people,dc=example,dc=com

dn: uid=user2,ou=managed_people,dc=example,dc=com
mepmanagedby: uid=user2,ou=managed_people,dc=example,dc=com
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Problems: plugins 

● Simple conflict and managed entry

● Delete managing conflict entry

● Result 

dn: cn=user2+nsuniqueid=8f79f...-4dccfc06,ou=managed_groups,dc=example,dc=com
mepmanagedby: uid=user2,ou=managed_people,dc=example,dc=com

dn: uid=user2,ou=managed_people,dc=example,dc=com
mepmanagedentry: cn=user2,ou=managed_groups,dc=example,dc=com
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Solution

● Define conflict resolution rules
– Consistency rule

– Correctness rule

– Transparency rule

– Best effort rule(s)

● Define conflict representation and necessary 
artifacts to resolve conflicts

● Apply rules
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Conflict resolution rules(1)

consistency rule

After processing a given set of operations on all 
servers, the contents of the database on all 
servers has to be identical 
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Conflict resolution rules(2)

correctness rule

The result processing a given set of operations 
should be the same as if the set of operations 
were applied on a single server in the order 
they were originally received 
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Conflict resolution rules(3)

transparency rule

Operations which are rejected in the update 
resolution process have to be invisible to 
normal client operations .
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Conflict resolution rules(4)

Best effort rules: 
Unfortunately the correctness rule cannot be applied to all combinations 
of operations without extremely overhead in processing and maintaining 
replication state information.

Example: 

Time 
Master 1 Master 2

t1 Modrdn E → X

t2 Mod E
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Conflict resolution rules(5)

Best effort rules: 

If the entry a modify operation has to be applied 
does not exist, attempt to apply the operation to 
the entry with the same nsuniqeuid as the entry 
where the operation was first applied to (  sticky 
rule).
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Solution (1)
● Hide conflict entries

– Add objectclass ldapsubentry

● Track presence of entries by artefacts
– Tombstone: represents a deleted entry

– Cenotaph: represents a renamed entry

– Track time an entry with a specific dn did exist
dn: cenotaphID=c6be880c-afe011e7-b42ae714-dd13d87b+cn=ax9,cn=test_1,dc=example,dc=com
objectClass: extensibleobject
objectClass: nstombstone
objectClass: top
cenotaphfrom: 59e05f35000000010000
cenotaphto: 59e05f37000000020000
nstombstonecsn: 59e05f37000000020000
cenotaphid: c6be880c-afe011e7-b42ae714-dd13d87b
cn: ax9
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Solution (2)

● Enhance update resolution to get consistent 
results: example ADD (1)

In a replicated ADD we can have 

Existing entry with nsuniqueid to be added: ex_nsuid_e
Existing entry with dn of entry to be added: ex_dn_e
Entry to be added: add_e
csn of the ADD operation: opcsn

Step 1: check if ex_nsuid_e exists
 ⇒ entry was already added, NOOP
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Solution (3)

● Enhance update resolution to get consistent 
results: example ADD(2)

Step2: Check if conflicting cenotaphs or tombstones for DN(add_e) exist.
We need to check this even before checking id ex_dn_e exists. An existing ex_dn_e 
could have been added after an entry with the same dn has been deleted or renamed, 
this has to be checked first.

Case1: fromCSN < opcsn < toCSN
  ⇒ add_e has to become a conflict

Case2: a tombstone with opcsn < fromCSN < toCSN exists
 ⇒ resurrect the tombstone as conflict and turn Add_e directly into a tombstone

Case3: same as case2 for a cenotaph
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Solution (3)

● Enhance update resolution to get consistent 
results: example ADD(3)

Step3: if ex_dn_e exists, check which is the newer
Case 1: add_e is newer 

==> new entry becomes conflict
Case 2: ex_dn_e is newer

==> add add_e as valid entry
==> existing entry becomes conflict
==> move children of ex_dn_e to add_e

Step 4: ex_dn_e does not exist 
 ⇒ we can add the entry, 

but have to verify that also the parent exists or handle it: resolve parent
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Valid entries 

Tombstone entries 
(deleted entries)

cenotaph entries
(renamed entries) 

Conflict  entries 

Iceberg Diagram for replication conflicts
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