
Managing Replication Conflicts

Ludwig Krispenz, Brussels, Oct 20th

Managing Replication Conflicts

Agenda

● Conflict scenarios
● Current solutions
● Problems
● New Conflict Resolution

Managing Replication Conflicts

Conflict scenarios: concurrent
updates

* We talk about “performing operations at the same time” or “simultaneously” or
“independently”. This doesn’t require the operations to be processed at exactly the
same time, it means that operations on one server are performed before the
operations on an other are received via replication. In the following examples we
always assume that servers are in sync, operations are applied on severals servers
before the next synchronization and then servers are synchronized again

In a replication topology with loose consistency replication
conflicts can occur if updates are applied concurrently* on
different masters

Managing Replication Conflicts

 concurrency model (1)

Master 1 Master 2

t0

t1

MOD

MOD

MOD
MOD

MODMOD

MOD

MOD

sync

sync

async

Managing Replication Conflicts

concurrency model (2)

Master 1 Master 2

t0

t1

MOD

MOD

MOD
MOD

MODMOD

MOD

MOD

sync

sync

async

Potential conflicts

Conflict resolution

Managing Replication Conflicts

Conflict scenarios: simple conflict

● Add cn=s2 on master1 and and master2 at the same time

● Result (in previous 389-ds):

dn: cn=s2+nsuniqueid=0bc0130a-0a2e11e7-b268a04a-
 bdab994e,cn=test_0,dc=example,dc=com
dn: cn=s2,cn=test_0,dc=example,dc=com

Managing Replication Conflicts

Conflict Scenarios: orphaned entries

Time Master 1 Master 2

t1 Del P

t2 Add child C of P

Managing Replication Conflicts

Conflict scenarios:
composite conflicts

t0

t1 Add
E

t2 Add
E

t3 Del E

t4

t0 Add
E

t1 Add
E

t2

t3 Del E

t4

t0

t1 Add
E

t2

t3 Del E

t4 Add
E

Managing Replication Conflicts

Conflict scenarios:
conflicts with children(1)

● Add cn=p2 on master1 and and master2 at the same time

● Add child cn=c2 on master1 and cn=c3 on master2

Time Master 1 Master 2

t1 Add P2

t2 Add P2

t3 Add Child C3 of P

t4 Add child C2 of P

Managing Replication Conflicts

Conflict scenarios:
conflicts with children(2)

● Result (in previous 389-ds)

dn: cn=p2,cn=test_4,dc=example,dc=com

dn: cn=p2+nsuniqueid=8f79ffb5-...-4dccfc06,cn=test_4,dc=example,dc=com

dn: cn=c3,cn=p2+nsuniqueid=8f79ffb5-…..-4dccfc06,cn=test_4,dc=example,dc=com

dn: cn=c2,cn=p2,cn=test_4,dc=example,dc=com

Managing Replication Conflicts

Current solutions: 389-ds

● Simple conflict:

– If two entries with the same dn are added concurrently, one is
transformed into a conflict entry

– On all masters the same entry will become a conflict

● Orphaned entries:

– Resurrect the deleted entry and keep as glue entry

● Other cases: apply operation on the replica to the entry with the
specified nsuniqueid

Managing Replication Conflicts

Current solutions: other vendors

OpenDJ (forgerock), UnboundID: they create conflict
entries by adding a unique identifier to the dn of the conflict entry.
UnboundID claims that conflict entries are invisible.

https://ping.force.com/Support/PingIdentityArticle?id=kA340000000PMwBCA
W

https://bugster.forgerock.org/jira/browse/OPENDJ-454

Active Directory: Active directory also has a similar procedure
to deal with naming conflicts, creating conflict entries with unified dn

https://social.technet.microsoft.com/wiki/contents/articles/15435.active-direc
tory-duplicate-object-name-resolution.aspx

OpenLDAP: no explicit handling but creates inconsistencies ins
some of the ADD-DEL or ADD-MODRDN scenarios

https://ping.force.com/Support/PingIdentityArticle?id=kA340000000PMwBCAW
https://ping.force.com/Support/PingIdentityArticle?id=kA340000000PMwBCAW
https://bugster.forgerock.org/jira/browse/OPENDJ-454
https://social.technet.microsoft.com/wiki/contents/articles/15435.active-directory-duplicate-object-name-resolution.aspx
https://social.technet.microsoft.com/wiki/contents/articles/15435.active-directory-duplicate-object-name-resolution.aspx

Managing Replication Conflicts

Problems with current solution

● Confusion
● Inconsistencies
● Plugin messup

Managing Replication Conflicts

Problems: plugins - memberof

● Simple conflict and memberof

● Add group cn=g1 on master1 and and master2 at the same time

● Result

dn: cn=g1+nsuniqueid=68bbc90a-...-4dccfc06,cn=test_2,dc=example,dc=com
member: cn=m2_1,cn=test_2,dc=example,dc=com

dn: cn=g1,cn=test_2,dc=example,dc=com
member: cn=m2_1,cn=test_2,dc=example,dc=com

dn: cn=m2_1,cn=test_2,dc=example,dc=com
memberOf: cn=g1+nsuniqueid=68bbc90a-...-4dccfc06,cn=test_2,dc=example,dc=com
memberOf: cn=g1,cn=test_2,dc=example,dc=com

Managing Replication Conflicts

Problems: plugins – managed entry

● Simple conflict and managed entry

● Add cn=user2 on master1 and and master2 at the same time

● Result

dn: cn=user2,ou=managed_groups,dc=example,dc=com
mepmanagedentry: cn=user2,ou=managed_groups,dc=example,dc=com

dn: cn=user2+nsuniqueid=8f79...-4dccfc06,ou=managed_groups,dc=example,dc=com
mepmanagedentry: cn=user2,ou=managed_groups,dc=example,dc=com

dn: nsuniqueid=8f79...4dccfc06+uid=user2,ou=managed_people,dc=example,dc=com
mepmanagedby: uid=user2,ou=managed_people,dc=example,dc=com

dn: uid=user2,ou=managed_people,dc=example,dc=com
mepmanagedby: uid=user2,ou=managed_people,dc=example,dc=com

Managing Replication Conflicts

Problems: plugins

● Simple conflict and managed entry

● Delete managing conflict entry

● Result

dn: cn=user2+nsuniqueid=8f79f...-4dccfc06,ou=managed_groups,dc=example,dc=com
mepmanagedby: uid=user2,ou=managed_people,dc=example,dc=com

dn: uid=user2,ou=managed_people,dc=example,dc=com
mepmanagedentry: cn=user2,ou=managed_groups,dc=example,dc=com

Managing Replication Conflicts

Solution

● Define conflict resolution rules
– Consistency rule

– Correctness rule

– Transparency rule

– Best effort rule(s)

● Define conflict representation and necessary
artifacts to resolve conflicts

● Apply rules

Managing Replication Conflicts

Conflict resolution rules(1)

consistency rule

After processing a given set of operations on all
servers, the contents of the database on all
servers has to be identical

Managing Replication Conflicts

Conflict resolution rules(2)

correctness rule

The result processing a given set of operations
should be the same as if the set of operations
were applied on a single server in the order
they were originally received

Managing Replication Conflicts

Conflict resolution rules(3)

transparency rule

Operations which are rejected in the update
resolution process have to be invisible to
normal client operations .

Managing Replication Conflicts

Conflict resolution rules(4)

Best effort rules:
Unfortunately the correctness rule cannot be applied to all combinations
of operations without extremely overhead in processing and maintaining
replication state information.

Example:

Time
Master 1 Master 2

t1 Modrdn E → X

t2 Mod E

Managing Replication Conflicts

Conflict resolution rules(5)

Best effort rules:

If the entry a modify operation has to be applied
does not exist, attempt to apply the operation to
the entry with the same nsuniqeuid as the entry
where the operation was first applied to (sticky
rule).

Managing Replication Conflicts

Solution (1)
● Hide conflict entries

– Add objectclass ldapsubentry

● Track presence of entries by artefacts
– Tombstone: represents a deleted entry

– Cenotaph: represents a renamed entry

– Track time an entry with a specific dn did exist
dn: cenotaphID=c6be880c-afe011e7-b42ae714-dd13d87b+cn=ax9,cn=test_1,dc=example,dc=com
objectClass: extensibleobject
objectClass: nstombstone
objectClass: top
cenotaphfrom: 59e05f35000000010000
cenotaphto: 59e05f37000000020000
nstombstonecsn: 59e05f37000000020000
cenotaphid: c6be880c-afe011e7-b42ae714-dd13d87b
cn: ax9

Managing Replication Conflicts

Solution (2)

● Enhance update resolution to get consistent
results: example ADD (1)

In a replicated ADD we can have

Existing entry with nsuniqueid to be added: ex_nsuid_e
Existing entry with dn of entry to be added: ex_dn_e
Entry to be added: add_e
csn of the ADD operation: opcsn

Step 1: check if ex_nsuid_e exists
 ⇒ entry was already added, NOOP

Managing Replication Conflicts

Solution (3)

● Enhance update resolution to get consistent
results: example ADD(2)

Step2: Check if conflicting cenotaphs or tombstones for DN(add_e) exist.
We need to check this even before checking id ex_dn_e exists. An existing ex_dn_e
could have been added after an entry with the same dn has been deleted or renamed,
this has to be checked first.

Case1: fromCSN < opcsn < toCSN
 ⇒ add_e has to become a conflict

Case2: a tombstone with opcsn < fromCSN < toCSN exists
 ⇒ resurrect the tombstone as conflict and turn Add_e directly into a tombstone

Case3: same as case2 for a cenotaph

Managing Replication Conflicts

Solution (3)

● Enhance update resolution to get consistent
results: example ADD(3)

Step3: if ex_dn_e exists, check which is the newer
Case 1: add_e is newer

==> new entry becomes conflict
Case 2: ex_dn_e is newer

==> add add_e as valid entry
==> existing entry becomes conflict
==> move children of ex_dn_e to add_e

Step 4: ex_dn_e does not exist
 ⇒ we can add the entry,

but have to verify that also the parent exists or handle it: resolve parent

Managing Replication Conflicts

Valid entries

Tombstone entries
(deleted entries)

cenotaph entries
(renamed entries)

Conflict entries

Iceberg Diagram for replication conflicts

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27

