

Backasyncmeta status update

Nadezhda Ivanova
Software Engineer @ Symas Corp

LDAPCon2017

Slapd-meta
● Ldap-proxy backend, capable of proxying an operation

to multiple targets, aggregate the results and present
them to the client as if coming from a single server

● Uses one thread per operation to:
– Find or create a new connection

– Bind all targets

– Send to all targets

– Get entries/results from each target and return them to the
client

slapd-asyncmeta

● Ldap-proxy backend, capable of proxying an
operation to multiple targets, aggregate the results
and present them to the client as if coming from a
single server

● Processing of operations is asynchronous and
therefore executed by more than one thread:
– One thread to encode, send the request to the target

server and add it to the pending queue

– Another to read the response from the target and relay it
back to the client

Sender

Reader

What's changed since LDAPCon2015

● Substantial improvements in stability and memory
management
– Fixed memory leaks, multiple functional issues and crashes, tested

at maximum system loads and different network conditions

● Some changes to configuration and functionality
– No rewrite engine – only suffixmassage on DN available

– Network-timeout now configurable in milliseconds. Sets the
network timeout value after which poll(2)/select(2) following a
connect(2) returns in case of no activity when sending an operation
 to the remote target.

● ITS#8734

Lessons

● Adding an asynchronous back-end to a front-
end that does not expect it – bad idea

● Using your data in a way it's not meant to be
used – another bad idea

● Expect the unexpected (use cases)
● As you approach the speed of light, weird

things happen to time

Why use asyncmeta?

● Slightly decreased or equal throughput in ideal
network conditions

● Limited functionality – no rewrite engine
● Well...

Setup

● A single slapd server, with 3 databases configured
– An asyncmeta database with one target

– A meta database with one target – the target server is the same
as asyncmeta

– A local mdb database

● A slamd, running 2 jobs simultaneously, no traffic
restrictions:
– 5 clients performing a one-level search on the mdb database

– 5 clients performing the identical search on a meta or
asyncmeta database

No network delay

Meta and mdb

Avg per second Avg duration # of entries Result codes

1782.993 56.080 1.000 Success(100%)

2548.804 39.231 1.000 Success(100%)

Asyncmeta and mdb

Avg per second Avg duration # of entries Result codes

1532.683 65.233 1.000 Success(100%)

21418.232 4.714 1.000 Success(100%)

300 ms network latency

Meta and mdb

Avg per second Avg duration # of entries Result codes

57.280 1743.354 1.000 Success (100%)

7127.022 14.029 1.000 Success (100%)

Asyncmeta and mdb

Avg per second Avg duration # of entries Result codes

314.120 318.258 1.000 Success (100%)

24476.402 4.084 1.000 Success (100%)

50% packet loss

Meta and mdb

Avg per second Avg duration # of entries Result codes

24.139 3983.972 1.000 Success (100%)

20.815 4786.157 1.000 Success (100%)

Asyncmeta and mdb

Avg per second Avg duration # of entries Result codes

59.633 1667.900 1.000 Success (61.302%)
admin limit
exceeded
(38.698%)

16817.889 5.944 1.000 Success (100%)

When to use slapd-meta

● You need the rewrite engine – suffixmassage is
not enough

● When you are secure in the quality of your
network

● When proxying is your server's “life mission”.
● When you need to use any of slapd's existing

overlays

When to consider use slapd-
asyncmeta

● When suffix-massage will do
● When your slapd server is expected to handle

local traffic, apart from proxying
● When fluctuations in network performance are

expected
● When you do not need existing overlays, or are

willing to test and fix potential issues

Caveats

● No guarantee it will work with any existing
overlays

● In custom modules, do not use o_tmpmem
allocator for o_extra data

● Make sure the callbacks are dynamically
allocated.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

