
MRuby Backend for OpenLDAP
Open Source Solution Technology Corporation
HAMANO Tsukasa <hamano@osstech.co.jp>

LDAPCon 2017 Brussels October 2017

Abstract
We often receive requests that require us to
use various data storage (Cloud Database
and NoSQL) as user store and allow
the frontend to speak in LDAP protocol.
OpenLDAP is designed to allow you to
develop flexibly these backend modules you
want, but it requires a lot of development
resources and time efforts. To develop
OpenLDAP backends rapidly, we already
have back-perl, but the development with
it is still not practical due to the fact
that it has only one interpreter although
OpenLDAP is a multi-threaded application.
This paper introduces back-mruby that is
a new OpenLDAP backend that makes
backend development easy for everyone.
Reasons why we should use Ruby rather than
Perl or Python are also explained.

1 Arrival of MRuby
There are many implementations of the
Ruby language. The most popular and
official implementation is CRuby. MRuby
is a new implementation that is compatible
with the Ruby 1.9 specification. MRuby has
small footprint compared with conventional
Ruby implementations and works on small
devices well. MRuby is also assumed to
be embedded into applications rather than

executing as stand alone application.
Matz, the creator of CRuby, started

MRuby project in 2010. This project
is supported by METI (ministry of the
Government of Japan). Currently, MRuby
is being developed on github.com and is
distributed under the MIT License.*1

2 Limitation of back-perl
The Perl backend (back-perl) already exists
in OpenLDAP. It enables us to develop
flexible OpenLDAP backends rapidly by
implementing LDAP request handlers in
Perl language. back-perl is better suited
for integrating with high-level datastores
rather than low-level databases such as
BDB and LMDB. It can perform to append
LDAP protocol interface to various datastore
models such as RDBMS, NoSQL and cloud
datastore services.

However, the back-perl has a limitation
that the slapd process has only one Perl
interpreter. Theoretically multiple Perl
interpreters can be created in a process,
but the API of interpreter operation is not
thread-safe so these cannot be executed in
parallel. Therefore, back-perl is not practical
because it only executes one Perl handler at
a time although slapd is multi-threading.

*1 https://github.com/mruby/mruby

1

https://github.com/mruby/mruby

Figure1 back-perl process model

At first, We tried to replace Perl interpreter
of back-perl with Python and CRuby, but
they have the same issue. Python allows
us to create multiple sub-interpreters in a
process, but it needs to acquire GIL (global
interpreter lock) when python objects are in
operation.

Figure2 back-python process model

3 New backend: back-mruby
Secondly, We have started to implement the
MRuby backend for OpenLDAP. We can
create MRuby virtual machines as many as
we want within a single process. MRuby
solves the issue around locking. Memory
spaces of these VMs are completely
independent and do not affect each other. In
back-mruby, slapd assigns MRuby virtual

machine for each thread. These OpenLDAP
threads are thus able to execute Ruby code
in parallel effectively.

Figure3 back-mruby process model

4 Usage
4.1 Configuration
The configuration of back-mruby is very
simple. It just requires to set rubyfile
parameter to slapd.conf as below. This
makes slapd load the Ruby script file in
which LDAP request handlers are defined.

In slapd.conf:

rubyfile example.rb

4.2 BIND Example
The LDAP request handler as ruby script
can be defined as follows. The first example
shows how to implement BIND request
handler that successfully authenticates with
a probability of 1

2 .

def bind(op)

if rand(2) == 0

LDAP_SUCCESS

else
LDAP_INVALID_CREDENTIALS

end
end

2

The next example shows how to
implement BIND request handler with
static user entries. The data of LDAP
request are passed as the op argument to
which the op structure of slapd is simply
mapped. For example, a normalized DN is
available with op['ndn'].

def bind(op)

User DN and password mappings

users = {

'uid=alice,dc=example,dc=com' =>

'secret1',

'uid=bob,dc=example,dc=com' =>

'secret2',

}

ndn = op['ndn']

cred = users[ndn]

if cred == op['req']['cred']

LDAP_SUCCESS

else
LDAP_INVALID_CREDENTIALS

end
end

4.3 SEARCH Example
The Search request handler function should
return a list of LDIF entries or a response
code. The following example shows how
to implement SEARCH request handler that
processes requests which scope is base or
one.

def search(op)

scope = op["req"]["scope"]

if scope == LDAP_SCOPE_BASE

search_base(op)

elsif scope == LDAP_SCOPE_ONE

search_one(op)

else
LDAP_NO_SUCH_OBJECT

end
end

Returns base entry.

def search_base(op)

ldif = <<END_OF_LDIF
dn: dc=example,dc=com

objectClass: top

objectClass: dcObject

objectClass: organization

dc: example

o: example

END_OF_LDIF
[ldif]

end

Returns two user entries.

def search_one(op)

entries = []

ldif = <<END_OF_LDIF
dn: uid=%s,dc=example,dc=com

objectClass: top

objectClass: account

uid: %s

END_OF_LDIF
entries << ldif % (["alice"] * 2)

entries << ldif % (["bob"] * 2)

entries

end

5 Future tasks
• back-mruby creates and destroys one

VM for each LDAP request. VM
creation is fast enough, but reusing VM
may increase efficiency.

• We are currently developing back-
mruby on github.com*2. I will request
to merge official OpenLDAP repository
in the future.

*2 https://github.com/osstech-jp/
openldap/tree/mruby

3

https://github.com/osstech-jp/openldap/tree/mruby
https://github.com/osstech-jp/openldap/tree/mruby

	1 Arrival of MRuby
	2 Limitation of back-perl
	3 New backend: back-mruby
	4 Usage
	4.1 Configuration
	4.2 BIND Example
	4.3 SEARCH Example

	5 Future tasks

