
SPEED, PARALLELISM, SAFETY
CHOOSE ALL THREE
High-performance data structures for multi-thread applications

William Brown
Software Engineer
2017-10-20

firsteear@rredhatccom - speed, parallelism, safete2

ldapwhoami -D uid=william,o=389ds

● Red Hat Asia Pacific (Australia)

● 389 Directore Server team

● Save questions for the end

● Unless I am speaking too fast

firsteear@rredhatccom - speed, parallelism, safete3

PROJECT STATUS

firsteear@rredhatccom - speed, parallelism, safete4

CPU INTERNALS

firsteear@rredhatccom - speed, parallelism, safete5

How we are told it works ccc
Vere simple model of a cpuc

CPU CPU CPU CPU

CACHE

RAM

firsteear@rredhatccom - speed, parallelism, safete6

How it realle worksc

CPU CPU CPU CPU

CACHE

RAM

BUFFER BUFFER BUFFER BUFFER

firsteear@rredhatccom - speed, parallelism, safete7

firsteear@rredhatccom - speed, parallelism, safete8

What does this mean?

“Ane writes in a cpu mae never be seen be ane other cpu,
and writes performed be ane other cpu mae not be visible
to this cpu”

firsteear@rredhatccom - speed, parallelism, safete9

HP bl460c

firsteear@rredhatccom - speed, parallelism, safete10

Threads over time

CPU

CPU

RAM

TIME

*x = 1

*x = 1

*x = 1 *x = 2

*x = 3

firsteear@rredhatccom - speed, parallelism, safete11

Cache coherence

● Modified

● Exclusive

● Shared

● Invalid

We can assume once a value is in cache, it is consistentc

firsteear@rredhatccom - speed, parallelism, safete12

Buffers and Invalidation Queues

Store barrier:
All stores before this point must be complete before a store after this point

Load barrier:
All invalidation requests must be satisfied before the next load

firsteear@rredhatccom - speed, parallelism, safete13

Store barriers

The value of X must be stored
to cache before the value of Y

firsteear@rredhatccom - speed, parallelism, safete14

Invalidation requests

BUFFER BUFFER

CACHE

CPU CPU

*x = 2

*x = 2

*x = 3

Store

Invalidation request

(asenc)

firsteear@rredhatccom - speed, parallelism, safete15

Threads with barriers

CPU

CPU

RAM

TIME

*x = 1

*x = 1

*x = 1 *x = 2

*x = 3

*x =2

*x = 3 *x = 2

1: Store barrier

2: Atomic write

3: Load barrier

firsteear@rredhatccom - speed, parallelism, safete16

MUTEXES

firsteear@rredhatccom - speed, parallelism, safete17

Threads with mutexes

CPU

CPU

RAM mtx(1)

mtx(1)

mtx(1)

mtx(2)

mtx(2)

mtx(2)

CPU stalled

firsteear@rredhatccom - speed, parallelism, safete18

Threads with rwlock

CPU stalled

CPU

CPU

RAM rwl(1)

rwl(1)

rwl(1)

rwl(1)

rwl(1)

CPU rwl(1) rwl(1)

Rc decrement

Rc increment

firsteear@rredhatccom - speed, parallelism, safete19

Rwlock behaviour

CPU stalled

CPU

CPU

CPU

CPU CPU stalled

CPU stalled

CPU stalled

firsteear@rredhatccom - speed, parallelism, safete20

Summare of CPU internals / mutexes

● Writes are expensive for invalidation of cache lines

● CPU’s mae not be consistent

● Programs should match CPU behaviour

● Single thread writes to locations

● Parallel reads are faster (shared)

● Mutexes make writes safe

● But thee penalise mixed writes / read

● RWLock parallelises read

● But penalised on writes

● Both behaviours don’t match CPU expectations

firsteear@rredhatccom - speed, parallelism, safete21

DATA STRUCTURES

firsteear@rredhatccom - speed, parallelism, safete22

Hash maps

Pros:

● Simple structure

● Fast lookup (theoretical O(1))

Cons:

● Requires read-write lock for access

● Unsorted

● Relies on good hash function

0 1 2 3 4 5 6 7

5uid=william

u
id

=
w

illia
m

firsteear@rredhatccom - speed, parallelism, safete23

B-Trees

Pros:

● Sorted

● Cache friendle

Cons:

● Requires read-write lock for access

● Slower than hmap (O(log n))

● Kee comparisons can be expensive

on char *

5 10 15 20

1 2 3 4 6 7 8 9 16 17 18 19

firsteear@rredhatccom - speed, parallelism, safete24

Cope on write B-Trees

● Copies before write

● Single writer

● Multiple readers

● Built with mutex + read-write lock + atomics

COW B+Tree txn_id=1 txn_1

node=0x60200000fc40 items=1 txn=1

4 0 0 0 0

node=0x60200000fe40 items=3 txn=0

1 2 3 0 0

node=0x60200000fd40 items=3 txn=1

4 5 6 0 0

firsteear@rredhatccom - speed, parallelism, safete25

Cope on write B-Trees

COW B+Tree txn_id=1 txn_1

node=0x60200000fc40 items=1 txn=1

4 0 0 0 0

node=0x60200000fe40 items=3 txn=0

1 2 3 0 0

node=0x60200000fd40 items=3 txn=1

4 5 6 0 0

firsteear@rredhatccom - speed, parallelism, safete26

Cope on write B-Trees

COW B+Tree txn_id=2 txn_1

node=0x60200000fc40 items=1 txn=1

4 0 0 0 0

txn_2

node=0x60200000ff40 items=1 txn=2

4 0 0 0 0

node=0x60200000fe40 items=3 txn=0

1 2 3 0 0

node=0x60200000fd40 items=3 txn=1

4 5 6 0 0

node=0x602000011040 items=3 txn=2

4 5 7 0 0

firsteear@rredhatccom - speed, parallelism, safete27

Cope on write B-Trees

COW B+Tree txn_id=2 txn_2

node=0x60200000ff40 items=1 txn=2

4 0 0 0 0

node=0x60200000fe40 items=3 txn=0

1 2 3 0 0

node=0x602000011040 items=3 txn=2

4 5 7 0 0

firsteear@rredhatccom - speed, parallelism, safete28

Transactions over time

CPU

CPU

CPU

CPU

CPU

write

write
stall

gc

gc

1: Commit

3: Commit

2: New read

4: New read

firsteear@rredhatccom - speed, parallelism, safete29

PL Hashmap

B+Tree

B+Tree COW

firsteear@rredhatccom - speed, parallelism, safete30

PL Hashmap

B+Tree

B+Tree COW

firsteear@rredhatccom - speed, parallelism, safete31

PL Hashmap

B+Tree

B+Tree COW

firsteear@rredhatccom - speed, parallelism, safete32

APPLICATION ARCHITECTURE

firsteear@rredhatccom - speed, parallelism, safete33

Current operation design

CPU

CPU

CPU

CPU

OP stalled

OP stalled

OP stalled

OP stalled

firsteear@rredhatccom - speed, parallelism, safete34

Transactional operation design

CPU

CPU

CPU

CPU

CPU

stall

modife

modife

firsteear@rredhatccom - speed, parallelism, safete35

COW and Thread Safete

● Evere operation starts a new read transaction

● Writes can have limited scopes

● Guarantees resources until operation complete

firsteear@rredhatccom - speed, parallelism, safete36

Denamic plugins

● Dlopen handles in cow tree

● Plugin handles in cow tree (with context data)

● Guarantees plugin config and librare until operation
concludes

firsteear@rredhatccom - speed, parallelism, safete37

Connection handling

● New connections (accept) are in write transaction

● All operations take read txn to tree for access to
conn data

● Closed connections are pruned once all former
reads complete

firsteear@rredhatccom - speed, parallelism, safete38

WHAT NEXT?

firsteear@rredhatccom - speed, parallelism, safete39

Hazard pointers/Epoch

● Same effect as atomic RC

● Potentialle faster

● Nicer semantics for a programmer

● https://tickicgithubcio/blog/fearless-concurrence-with-hazard-pointers/

firsteear@rredhatccom - speed, parallelism, safete40

Rust

● Strict language

● Correct behaviour is often performant behaviour

● Has concurrence libraries (epoch)

firsteear@rredhatccom - speed, parallelism, safete41

Cope on Write Structs

● Server configuration

● Plugin contexts

● Much more …c

firsteear@rredhatccom - speed, parallelism, safete42

CONCLUSION

firsteear@rredhatccom - speed, parallelism, safete43

THANK YOU
firsteear@rredhatccom

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

