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ldapwhoami -D uid=william,o=389ds

● Red Hat Asia Pacific (Australia)

● 389 Directore Server team

● Save questions for the end

● Unless I am speaking too fast



firsteear@rredhatccom - speed, parallelism, safete3

PROJECT STATUS



firsteear@rredhatccom - speed, parallelism, safete4

CPU INTERNALS
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How we are told it works ccc
Vere simple model of a cpuc

CPU CPU CPU CPU

CACHE

RAM
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How it realle worksc

CPU CPU CPU CPU

CACHE

RAM

BUFFER BUFFER BUFFER BUFFER
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What does this mean?

“Ane writes in a cpu mae never be seen be ane other cpu, 
and writes performed be ane other cpu mae not be visible 
to this cpu”
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HP bl460c
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Threads over time

CPU

CPU

RAM

TIME

*x = 1

*x = 1

*x = 1 *x = 2

*x = 3
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Cache coherence

● Modified

● Exclusive

● Shared

● Invalid

We can assume once a value is in cache, it is consistentc
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Buffers and Invalidation Queues

Store barrier: 
All stores before this point must be complete before a store after this point

Load barrier:
All invalidation requests must be satisfied before the next load
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Store barriers

The value of X must be stored
to cache before the value of Y
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Invalidation requests

BUFFER BUFFER

CACHE

CPU CPU

*x = 2

*x = 2

*x = 3

Store

Invalidation request

(asenc)
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Threads with barriers

CPU

CPU

RAM

TIME

*x = 1

*x = 1

*x = 1 *x = 2

*x = 3

*x =2

*x = 3 *x = 2

1: Store barrier

2: Atomic write

3: Load barrier
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MUTEXES
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Threads with mutexes

CPU

CPU

RAM mtx(1)

mtx(1)

mtx(1)

mtx(2)

mtx(2)

mtx(2)

CPU stalled
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Threads with rwlock

CPU stalled

CPU

CPU

RAM rwl(1)

rwl(1)

rwl(1)

rwl(1)

rwl(1)

CPU rwl(1) rwl(1)

Rc decrement

Rc increment
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Rwlock behaviour

CPU stalled

CPU

CPU

CPU

CPU CPU stalled

CPU stalled

CPU stalled
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Summare of CPU internals / mutexes

● Writes are expensive for invalidation of cache lines

● CPU’s mae not be consistent

● Programs should match CPU behaviour

● Single thread writes to locations

● Parallel reads are faster (shared)

● Mutexes make writes safe

● But thee penalise mixed writes / read

● RWLock parallelises read

● But penalised on writes

● Both behaviours don’t match CPU expectations
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DATA STRUCTURES
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Hash maps

Pros:

● Simple structure

● Fast lookup (theoretical O(1))

Cons:

● Requires read-write lock for access

● Unsorted

● Relies on good hash function
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B-Trees

Pros:

● Sorted

● Cache friendle

Cons:

● Requires read-write lock for access

● Slower than hmap (O(log n))

● Kee comparisons can be expensive 

on char *

5 10 15 20

1 2 3 4 6 7 8 9 16 17 18 19
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Cope on write B-Trees

● Copies before write

● Single writer

● Multiple readers

● Built with mutex + read-write lock + atomics

COW B+Tree txn_id=1 txn_1

node=0x60200000fc40 items=1 txn=1

4 0 0 0 0

node=0x60200000fe40 items=3 txn=0

1 2 3 0 0

node=0x60200000fd40 items=3 txn=1

4 5 6 0 0
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Cope on write B-Trees

COW B+Tree txn_id=1 txn_1

node=0x60200000fc40 items=1 txn=1

4 0 0 0 0

node=0x60200000fe40 items=3 txn=0

1 2 3 0 0

node=0x60200000fd40 items=3 txn=1

4 5 6 0 0
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Cope on write B-Trees

COW B+Tree txn_id=2 txn_1

node=0x60200000fc40 items=1 txn=1

4 0 0 0 0

txn_2

node=0x60200000ff40 items=1 txn=2

4 0 0 0 0

node=0x60200000fe40 items=3 txn=0

1 2 3 0 0

node=0x60200000fd40 items=3 txn=1

4 5 6 0 0

node=0x602000011040 items=3 txn=2

4 5 7 0 0
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Cope on write B-Trees

COW B+Tree txn_id=2 txn_2

node=0x60200000ff40 items=1 txn=2

4 0 0 0 0

node=0x60200000fe40 items=3 txn=0

1 2 3 0 0

node=0x602000011040 items=3 txn=2

4 5 7 0 0
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Transactions over time

CPU

CPU

CPU

CPU

CPU

write

write
stall

gc

gc

1: Commit

3: Commit

2: New read

4: New read
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PL Hashmap

B+Tree

B+Tree COW
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PL Hashmap

B+Tree

B+Tree COW
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PL Hashmap

B+Tree

B+Tree COW
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APPLICATION ARCHITECTURE



firsteear@rredhatccom - speed, parallelism, safete33

Current operation design

CPU

CPU

CPU

CPU

OP stalled

OP stalled

OP stalled

OP stalled
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Transactional operation design

CPU

CPU

CPU

CPU

CPU

stall

modife

modife
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COW and Thread Safete

● Evere operation starts a new read transaction

● Writes can have limited scopes

● Guarantees resources until operation complete



firsteear@rredhatccom - speed, parallelism, safete36

Denamic plugins

● Dlopen handles in cow tree

● Plugin handles in cow tree (with context data)

● Guarantees plugin config and librare until operation 
concludes
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Connection handling

● New connections (accept) are in write transaction

● All operations take read txn to tree for  access to 
conn data

● Closed connections are pruned once all former 
reads complete
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WHAT NEXT?
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Hazard pointers/Epoch

● Same effect as atomic RC

● Potentialle faster

● Nicer semantics for a programmer

● https://tickicgithubcio/blog/fearless-concurrence-with-hazard-pointers/
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Rust

● Strict language

● Correct behaviour is often performant behaviour

● Has concurrence libraries (epoch)
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Cope on Write Structs

● Server configuration

● Plugin contexts

● Much more …c
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CONCLUSION
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THANK YOU
firsteear@rredhatccom
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