
Apache MAVIBOT

a new backend for Apache Directory Server

Emmanuel Lécharny
elecharny@apache.org
http://symas.com

mailto:elecharny@apache.org

Mavibot

“Blue boat” in turkish

(Thanks to Ersin Er

for the name)

Also built from MVBT

(Multi-Versions

B-tree)

Principles

B+trees

● A Node has at least N/2 keys and up to N keys

(except the root node)

● Leaves have keys and values

● The B+tree is balanced (ie all leaves are at the

same level)

● Operations :

○ Add

○ Delete

○ browse

B+trees, continued

● Log N operations

● Locks are used to guarantee consistency

● On average, the B-tree nodes are 3/4 full

● Transactions are complex to implement...

B-trees, what for ?

● Used everywhere

○ Database (indexes)

○ File System

■ HSF+

■ NTFS

■ BTRFS

■ EXT4

■ Reiser 4 (B*tree)

MVCC

● Stands for “Multi-Version Concurrency Control”

● Invented back in 1978 (David P. Reed)

● Allows consistent concurrent reads and writes

● Locks can be avoided while reading

● Transactions can easily be implemented

Think about Version Control Systems...

Apache Directory Server

● Entries stored in a B-tree

● Index stored in B-trees

● In-memory B-trees needed

● Transaction support cross B-trees

● Multi-value support

Currently...

● Using JDBM

○ No cross B-tree transactions

○ No locks

○ No crash recovery system

○ No bulk load

● AVL trees in memory

● Locks all over the server to guarantee consistency

Other options ?

● BDB JE

○ Incompatible license...

○ Complex configuration

○ Heavy...

● LMDB

○ C code base (ie, JNI ...)

○ Fixed size initialization

○ Need a Java Wrapper

Mavibot

History

● CouchDB

○ 2006 conference

○ Sadly, Erlang code base

○ However, a perfect fit

● JDBM limits reached

○ 2011 : adding locks all over the server

○ 2012 : implementing a crash recovery system resulting in awful

performances

○ No transaction (well, no cross B-tree transactions)

○ no bulk load tool

○ Database corruption

Most wanted features

● MVCC

● Cross B-trees transactions

● Crash resistance

● Bulk-load

● In-memory and persisted

● Multi-value support

● fast

How does it work ?

How does it work ?

How does it work ?

How does it work ?

Operations

● Read

○ Cursor Browse()

○ Cursor browseFrom(K)

○ Boolean Contains(K, V)

○ V Get(K)

○ Boolean hasKey(K)

● Write

○ Delete(K)

○ insert(K, V)

Cursor

● Navigation

○ afterLast()

○ beforeFirst()

○ next()

○ prev()

● State

○ available()

○ hasNext()

○ hasPrev()

○ isClosed()

● Action

○ close()

○ get()

B-tree management

● Adding a B-tree :

○ Create its definition

○ Insert it in the RecordManager

■ Creates the B-tree

■ Stores its first revision in the BoB

■ Adds it to the list of managed B-trees

● No deletion (atm)

Example : init

 RecordManager recordManager = new RecordManager(“/tmp/mavibot.db”);

 // Create a new BTree
 try (WriteTransaction transaction = recordManager.beginWriteTransaction())
 {
 btree = recordManager.addBTree(
 transaction,
 "test",
 LongSerializer.INSTANCE,
 StringSerializer.INSTANCE);
 }

Example : insert

 long[] values = new long[]
 {
 14, 7, 43, 37, 49, 3, 20, 26, 17, 29,
 40, 33, 21, 18, 9, 30, 45, 36, 12, 8
 };

 try (WriteTransaction writeTxn = recordManager.beginWriteTransaction())
 {
 for (long value : values)
 {
 BTree<Long, String> btree = writeTxn.getBTree("test");

 btree.insert(writeTxn, value, Long.toString(value));
 }
 }

Example : Browse

 try (Transaction readTxn = recordManager.beginReadTransaction())
 {
 BTree<Long, String> btree = readTxn.getBTree("test");
 TupleCursor<Long, String> cursor = btree.browse(readTxn);

 while (cursor.hasNext())
 {
 cursor.next();
 Tuple<Long, String> tuple = cursor.get();

 System.out.println(“<” + tuple.getKey() + ”,” + tuple.getValue() + “>”);
 }
 }

Let’s get our hands

dirty...

Mavibot layout : File

Mavibot database is stored in a single file

This file is split in fixed size physical pages that may

be linked together : pageIO

Mavibot layout : PageIO

Physical pages (PageIO) are holding the content of

logical Pages :

● Leaf

● Node

● BTreeHeader

● BTreeInfo

Mavibot layout : RMH

The RecordManager Header is

the very first page

It stores references to

Mavibot content :

● B-tree of B-trees

● Copied Pages B-tree

● Free pages list

● ID Counter

RecordManager Header

● One single page, can be written in one I/O

● Always updated after every revision creation or

version cleanup

● Stores the current status :

○ Current revision

○ Current page ID

○ Number of managed B-trees

○ Page-IO size

Mavibot layout : B-tree

A Mavibot B-tree is :

● A B-tree header page

● A B-tree info page

● Some pages

○ Nodes

○ Leaves

B-tree header

● The B-tree entry point

● Points to the Root-Page

● Points to the B-tree info

● Contains the number of

elements

● Contains the current

revision

B-tree Info

The B-tree informations

● B-tree name

● Nb elements per page

● Key serializer

● Value serializer

Immutable

B-tree pages

2 flavors of pages :

● Leaf : up to N keys and Values

● Node : up to N keys and N+1 offset

Every page has :

● A unique ID (a 64 bits long)

● A revision

● The number of elements stored

B-tree of B-trees

● This B-tree stores a reference to any managed

B-tree (except itself and the Copied Pages B-tree)

● We can retrieve a given B-tree from it

● New revisions are stored in this B-tree

Read at startup to load each B-tree in its latest

version

Copied Pages B-tree

● When we create a new version, the copied pages are

stored in this B-tree

● When the revision is freed, the associated copied

pages can be released and moved to the free list

Free pages list

● We use a list of free pageIOs

● They are re-used on demand

● When empty, we create a new pageIO at the end of

the file

● The free pageIOs are linked

● We can grab more than one pageIO

● Writes use one single thread, no lock needed for

this list

Features

Values/Keys has to be (de)serialized (byte[] <->

object)

(De)Serialization is costly.

Differing saves time

(De)Serialization

Cache

Node’s children are referenced

using their page offset

Pages are cached (LRU)

Better have a big cache !

WeakReference is too slow...

Free pages management

Node’s children are referenced

using their page offset

Pages are cached (LRU)

Better have a big cache !

WeakReference is too slow...

Releasing version 4

Releasing version 3

Releasing versions 3 and 4

Bulkload

● Load the data from the bottom up

● Data must be sorted beforehand

○ Quicksort in memory O(n log(n))

○ Merge sort when memory is limited O(n Log(n))

○ Result is dense

● Big transactions

○ Simpler but slower

○ Less dense

Bulkload (2)

Transactions

Read vs Write transaction

● Read transactions are concurrent

● Write transactions are serialized

● Every committed write transaction creates a new

version

● Write transactions can gather more than one

operation

● Read/Write transactions are cross-B-trees

Transaction processing

<- One

Vs

Many ->

one vs many operation/txn

Mavibot & ApacheDS

Current version

● ApacheDS embed version 1.0.0-M8

● Twice faster than JDBM

● No transaction support in 1.0.0-M8

● Free page management is not optimal

● Multi-value elements supported

● In-memory B-tree supported

New version

● No multi-value support : ApacheDS to deal with it

● Cross-B-tree Transaction support

● Free page management on the fly

● No in-memory B-tree

● Faster than 1.0.0-M8

● Cache

ApacheDS Index/B-trees

● Entry

● ApacheDS index

○ * Present

○ * ObjectClass

○ * entryUUID

○ * EntryCSN

○ ** Rdn + reverse

○ Alias + reverse

○ OneAlias

○ subAlias

○ AdminRole

Conclusion

Not a big code base

● 18 253 slocs

● Long lasting effort (day job, family events…)

● Solve a lot of issues

● Should be completed soon !

Q&A

Thanks !

